
Linux XIA: An Interoperable Meta Network Architecture to
Crowdsource the Future Internet

Michel Machado
Boston University
michel@bu.edu

Cody Doucette
Boston University

doucette@cs.bu.edu

John W. Byers
Boston University

byers@cs.bu.edu

ABSTRACT
With the growing number of proposed clean-slate redesigns
of the Internet, the need for a medium that enables all stake-
holders to participate in the realization, evaluation, and se-
lection of these designs is increasing. We believe that the
missing catalyst is a meta network architecture that wel-
comes most, if not all, clean-state designs on a level playing
field, lowers deployment barriers, and leaves the final evalu-
ation to the broader community. This paper presents Linux
XIA, a native implementation of XIA [12] in the Linux ker-
nel, as a candidate. We first describe Linux XIA in terms of
its architectural realizations and algorithmic contributions.
We then demonstrate how to port several distinct and un-
related network architectures onto Linux XIA. Finally, we
provide a hybrid evaluation of Linux XIA at three levels of
abstraction in terms of its ability to: evolve and foster in-
teroperation of new architectures, embed disparate architec-
tures inside the implementation’s framework, and maintain
a comparable forwarding performance to that of the legacy
TCP/IP implementation. Given this evaluation, we substan-
tiate a previously unsupported claim of XIA: that it readily
supports and enables network evolution, collaboration, and
interoperability — traits we view as central to the success of
any future Internet architecture.

1. INTRODUCTION
The growing number of clean-slate redesigns of the In-

ternet reflects the sensible effort of the network community
to address the need of finding successors to the long reign
of TCP/IP. However, this effort lacks a medium to bring all
stakeholders to participate in the realization, evaluation, and
selection of the next Internet architecture. On the one hand,
most existing clean-slate designs are siloed and elevate a few
network use cases above others, which fails to facilitate a
collaborative environment for the myriad of Internet stake-
holders, whose goals are not generally aligned. Further ev-
idence comes from the fact that there are few, if any, exam-
ples of cross-pollination of running code across clean-slate
proposals. On the other hand, and in the community’s de-
fense, designers have justifiably found it difficult to bring a
new design into fruition, demonstrate its merits, and have the
community at large experiment with it, due to the lack of a
suitable comparative evaluation platform on which to do so.

In this work, we advocate a meta network architecture that
nurtures coexistence of clean-slate designs, letting stakehold-
ers experiment with and choose the designs that best suit
their needs. Rather than designing yet another new net-
work architecture, we envisioned the eXpressive Internet Ar-

chitecture (XIA) [12] as a candidate, and implemented it
as a native network stack in the Linux kernel. Then, we
ported several rather different architectures to this platform
to demonstrate coexistence, and furthermore, built an ex-
emplifying application to show interoperability. As a side
effect, we substantiated XIA’s claim of supporting architec-
tural evolution. To demonstrate that Linux XIA is indeed a
realistic platform for other clean-slate designers, we bench-
marked its forwarding performance against Linux IP.

The three architectures we ported to Linux XIA are IP,
Serval [25], and zFilter [16]. In addition, we have con-
structed whitepaper ports for NDN [15] and ANTS [31].
Each of these ports adds a unique perspective to Linux XIA.
First, any successful clean-slate architecture will need to co-
exist with IP for years (or forever). Our port of IP to XIA
shows both how XIA can emulate IP and how it can pro-
gressively wean itself off of IP by removing dependencies
in a staged deprecation. Serval is a service-centric architec-
ture that complements Linux XIA with a mobile, multipath,
reliable transport; moreover, it aligns well with our goals
because, like us, its authors pursued a realistic implementa-
tion in Linux. zFilter, a key component behind the European
PURSUIT project, is a multicast architecture that requires
no state related to multicast groups on routers. Finally, NDN
is a content-centric architecture and ANTS is an early meta
architecture with a high degree of generality, both of which
provide interesting insights for Linux XIA. Due to space re-
strictions, we only briefly discuss the contributions of these
two latter ports in this paper.

The embedding of various alien designs is only one aspect
of the evolvability story, however. Linux XIA is capable
of a higher form of evolvability because it encourages in-
teroperability between ported architectures as well. In this
way, Linux XIA can combine functionality from different
architectures to enable a more powerful, componentized net-
work layer. In an exemplifying demonstration of this idea,
we have built a reliable multicast application that is capable
of pushing video content across a heterogeneous network by
combining XIA, IP, zFilter, and erasure codes [3].

We use the terms factor, architecture, and meta architec-
ture in this paper with the following meanings:

A network factor is a data plane component that specifies
abstractions, data formats, procedures, protocols, and
at least one class of identifiers that, together, enable
the instantiation of functional network configurations
of data processors.

A network architecture is a self-sufficient factor.

1



A meta network architecture is a framework that har-
monizes a broad spectrum of factors within its frame-
work without imposing any static dependencies among
factors.

The properties that define meta architectures warrant ex-
planation. The demand for supporting a broad spectrum of
factors is meant to match the intuition that designs that sup-
port a limited amount of diversity are insufficiently general
to warrant the meta architecture designation. The demand
for not imposing static dependencies, or dependencies that
arise in the design phase, among factors, captures the fact
that natural selection will imply deprecating and dropping
factors. It is worth pointing out that our definition of meta ar-
chitecture does not forbid runtime dependencies among fac-
tors. A fuller elaboration of the definitions above is avail-
able in the first author’s Ph.D. thesis [22, Section 1.1].

The distinctive feature of XIA over other meta architec-
tures is that XIA affords supported factors the opportunity
to specialize. As we discuss shortly, many previous meta
architectures have, due to design choices, isolated factors
to a degree that they force factors to be self-sufficient, that
is, to be organized into architectures. In contrast, XIA pro-
vides mechanisms that promote composition, or, put another
way, promote delegation of functions to other factors. Crit-
ically, this composition only takes place at runtime, thus,
stakeholders are free to choose the set of factors that their
networks support. This distinctive feature has informed our
effort to port other architectures and drives the discussion of
our taxonomy of meta architectures.

The contributions of this paper are fourfold:

1. providing clarifying interpretations of network factors,
network architectures, and meta network architectures
as well as providing a taxonomy of meta architectures;

2. realizing a native implementation of XIA, a meta ar-
chitecture that empowers the community at large to
crowdsource the future Internet;

3. substantiating the expressiveness of XIA by porting
three alien designs: IP, Serval, and zFilter; and

4. demonstrating the viability of Linux XIA through a
multi-tiered evaluation consisting of evolvability con-
siderations and by testing the forwarding performance
against the mature Linux implementation of TCP/IP.

The remainder of this paper is structured as follows: we
present and classify different breeds of meta architectures
documented in the literature (§2), summarize XIA (§3), pres-
ent key internals of our Linux implementation of XIA (§4),
show how we mapped alien designs onto XIA (§5), perform
a hybrid evaluation in terms of architectural design and for-
warding performance (§6), and conclude (§7).

2. META ARCHITECTURE TAXONOMY
The notion of a meta network architecture that evolves

to accommodate unforeseen network use cases has attracted
researchers for decades. Researchers in Sweden developed
Softnet [34], the first meta architecture of which we are aware,
in the early 1980s. While studying meta architectures, the
degree to which they isolate their factors is enlightening be-
cause it highlights the value that meta architectures offer to
applications, which ultimately reflect the utility functions of

their end users. This section groups other meta architectures
according to the degree of isolation between their factors;
proceeding from the highest degree of factor isolation to the
lowest.

Network virtualization [1, 28] and SDN/OpenFlow [23, 9]
are natural meta architectures; they do not limit the number
of supported factors, nor do they impose static dependencies
among the supported factors. At a high level, these meta
architectures slice network infrastructure into independent,
isolated sets of resource that are used to support their factors;
we call this group slicing meta architectures. The degree of
factor isolation, however, is high, so high that applications
are solely responsible for all the necessary work to leverage
multiple factors, which requires access to multiple slices of
the network. Moreover, the high degree of isolation forces
the supported factors to be self-sufficient in order to properly
operate their slices. As a result, these meta architectures only
support full-blown architectures.

The next group of meta architectures, the translating meta
architectures, encompasses Plutarch [7], FII [17], OPAE [11],
Omega [27], and SDIA [26]. These meta architectures seg-
ment the network into independent regions, map each region
to supported factors, and promote bridges between regions
to translate the protocols in both directions. Similar to slic-
ing meta architectures, supported factors must in fact be or-
ganized into network architectures, but applications are not
solely responsible for interoperability between regions. The
troubling aspect of this group is that facilities for translation
between these pluralistic architectures are not provided, and
may not always be possible. For example, there is no clear
mapping between a host-centric architecture, such as IP, and
a content-centric one, such as NDN [15]; §6.2 returns to this
point.

The third group, active meta architectures, is centered on
active networks [29], and most notably ANTS [31], the meta
architecture that pursued programmable networks as the stand-
ard-bearer for active networks. ANTS does not slice or seg-
ment a network; its factors share the whole network. Fac-
tor designers build factors with mobile code that is shipped
through the network from applications to routers with the
help of a code distribution protocol. While applications can
interoperate with multiple factors at the same time, the run-
time environment of mobile code intentionally isolates fac-
tors to address security issues. Nevertheless, factors can
be combined to compose a single factor. But due to isola-
tion in the runtime environment, factors still have to be self-
sufficient, as with the previous groups of meta architectures.

XIA distinguishes itself from other meta architectures by
promoting interoperability among all of its supported factors,
in the form of XIA principals. This interoperability takes
place with (1) XIA factors sharing the whole network, as in
ANTS, (2) network addresses enabling factor composition
at every address (§3), and (3) factor designers postponing
dependencies among factors until runtime through routing
redirects, an extension of XIA’s routing algorithm that we
introduce in Linux XIA (§4). Thanks to these mechanisms,
XIA factors can delegate functions and responsibilities to
other factors, which, in turn, enables XIA factors to special-
ize. A key novelty is that XIA factors do not have to be
self-sufficient, unlike all the meta architectures cited above.

The degree of factor isolation has deep effects on meta
architectures. A high degree of isolation forces factors to
be architectures, as arises in slicing, translating, and active

2



meta architectures. In contrast, the low degree of isolation
found in XIA allows factors to specialize and achieve their
functionality with minimal form. This effect is explored in
§5, where we leverage this flexibility when porting designs
onto the XIA meta architecture.

3. XIA IN A NUTSHELL
XIA’s central goal is an evolvable and secure Internet ar-

chitecture. By evolvable, XIA means having an explicit,
well-defined, incremental path to introduce changes to its
network layer, which is called the eXpressive Internet Pro-
tocol (XIP). These changes are introduced and removed in
units; each of these units is called an XIA principal. We
will show that XIA principals are examples of our more
general term, factors. By secure, XIA means providing the
capabilities to deliver security guarantees to applications.
XIA’s main vehicles to carry evolution and enable security
guarantees are, its expressive network addresses and the in-
trinsic security found at its network identifiers, respectively.
The remainder of this section presents the key concepts of
XIA’s design, puts these concepts together to form sample
addresses, and concludes with why XIA with an empty set of
principals is a meta architecture, but not an architecture, ac-
cording to our definitions. The content here serves as a quick
refresher for those readers acquainted with XIA; readers un-
familiar with XIA can refer to the original XIA paper [12].

In order for XIA principals to influence the forwarding
mechanism of XIP, they must introduce their own identifiers.
These identifiers are called eXpressive IDentifiers (XIDs),
and name any object or concept that principals define. Each
XID is the pairing of a principal type (32 bits) and a name
or ID (160 bits). Examples of principals and corresponding
XIDs are the Autonomous Domain (AD) principal, which
names XIA networks, the Host (HID) principal, which names
any machine (virtual or not) with an XIA stack, and the Con-
tent (CID) principal, which names immutable content.

Intrinsic security cryptographically links each XID’s name
to some property. For example, AD XIDs are the hash of
public keys of the networks they name, HID XIDs are the
hash of public keys of the machines they name, and CID
XIDs are the hash of the contents of the file they name.
When a network delivers to an application the file corre-
sponding to the requested XID CID1, the application can
verify that it received the correct file by hashing the content
of the file and comparing the hash against the content name
CID1. The hash of a public key allows an application to ob-
tain the corresponding public key from any source, trusted
or not, verify that it is the correct public key, and from there,
bootstrap a secure communication to the entity bound to that
public key. While it is desirable to have intrinsic security for
all XIDs, this is not attainable because some principals do
not have security properties to offer on their XIDs; see §5.1
for examples. Nevertheless, principal designers are strongly
encouraged to imbue their principals’ XIDs with intrinsic se-
curity wherever it is possible.

XIP addresses amalgamate principals’ behaviors to accom-
plish application-level intents, and are represented as single-
component, single-source, single-sink directed acyclic graphs
(DAGs) of XIDs. The ultimate intent of a packet is ex-
pressed in the XID of the sink node of the destination ad-
dress. The entry node of an address, represented by a dot
(•), has the sole purpose of pointing to where the navigation
of the DAG begins, and thus the simplest, nonempty XIP

address is • → XID1. While destination addresses must be
nonempty, source addresses can be empty; this behavior is
important to support architectures that do not have source
addresses, such as NDN. All other (internal) nodes of an ad-
dress represent XIDs, and each node is associated with be-
tween one and four strictly prioritized outgoing edges; four
being the maximum fanout supported in XIP addresses.

Routers are required to forward packets according to the
intent expressed in each DAG destination address. There-
fore, a valid set of packet forwarding decisions at routers
must correspond to a successful traversal of the DAG from
entry node to sink to achieve the final intent. How is this
accomplished? First, the XIP header stores the DAG as a
collection of nodes and their prioritized edges. Additionally,
the XIP header records a dynamic LastNode pointer to one of
the nodes in the DAG. This pointer, initially set to the entry
node, reflects the portion of the DAG that has been realized
by this packet by forwarding decisions so far. Thus, when
the packet reaches the intended destination, the LastNode

will point to the sink.
To forward a packet, a router first inspects the LastNode

field to identify the progress made through the DAG so far.
For each of the outgoing edges from the referenced node, in
priority order, the router attempts to forward on the corre-
sponding XID. If that XID is local to that router (for exam-
ple, the XID is an AD and the router is in that domain), the
router updates the LastNode field of the packet and either re-
curses on the forwarding decision, or, when LastNode points
to the sink, delivers the packet to the corresponding prin-
cipal of the sink node. Otherwise, if the XID is non-local,
the router forwards the packet toward the designated XID,
as normal. Finally, if the router cannot forward along any of
the outgoing edges of the DAG, the address is not reachable
and the packet is dropped.

Among the many address structures that DAGs afford, three
addressing patterns are commonly used to date: scoping,
fallback, and iterative refinement. Scoping a CID to a given
host can be accomplished with an address like • → HID1 →
CID1; this address requires packets first be forwarded to
host HID1, and from there, on to CID1. When a new XIA
principal is being deployed, chances are that many routers in
the network do not know it, this can be addressed with the
fallback pattern, which uses a lower priority edge to route
to a well-known principal in case the new principal is not
known by the router making the routing decision. For exam-
ple, assuming that the CID principal is not widely deployed,
one can still reach CID1 even if HID1 is the only host aware
of the CID principal (dashed edges reflect lower priority):

HID1 CID1

Finally, the iterative refinement pattern combines scoping
and fallback patterns. In the event host addresses such as
HID1 are not globally routable, we can have CID1 fall back
to an AD XID (AD1) where HID1 is presumed to reside:

AD1 HID1 CID1

Recalling our earlier architectural definitions, note that un-
like IP, XIP is not a factor, because it does not define any
class of identifiers. Therefore, XIA with an empty set of
principals, or equivalently, XIP alone, is not an architecture.
On the other hand, each XIA principal, through the require-

3



ment that it introduce its own eXpressive IDentifiers (XIDs),
is a network factor. Through its use of XIA principals (in-
cluding those introduced in this section and those in §5), XIP
harmonizes a broad spectrum of network factors without im-
posing any static dependencies (as discussed in §4). There-
fore XIA constitutes a meta architecture. Stakeholders have
to choose a set of factors that, together, instantiate XIA as
an architecture. One plausible choice is inclusion of the AD,
HID, and CID principals; this can serve as a baseline XIA
architecture, according to our terminology.

4. LINUX XIA
In order to substantiate the claim that XIA is a viable meta

architecture, we needed a full-blown network stack to ac-
commodate the implementations of other architectures. Fur-
thermore, a native implementation providing competitive rout-
ing performance is a necessary step to show that XIA is de-
ployable in production network environments.

At a block-diagram level, Figure 1 depicts TCP/IP and
XIA as parallel stacks in the Linux kernel. In the figure,
the matching colors guide the analogy between the stacks:
IP maps to XIP, TCP to Serval, and UDP to XDP. Although
the figure suggests that TCP, UDP, and IP are individual ker-
nel modules, in practice, the TCP/IP stack is implemented
as a single, monolithic module in Linux. In contrast, each
block on the XIA side corresponds to a distinct Linux kernel
module that we implemented. In this section, we focus on
the realization of XIP and the implementation of core XIA
principals like HID and AD1. Later, when we integrate alien
designs with XIA, we describe the realization of 4ID to pro-
vide interoperability with IP, and describe our implementa-
tions of Serval and zFilter. These appear in §5.1, §5.2, and
§5.3 respectively. Due to space limitations, Principal XDP
(eXpressive Datagram Principal) is not discussed further.

We next discuss the impact that our experience developing
Linux XIA had on our architectural design (§4.1), and cover
the algorithmic details of how Linux XIA forwards packets
and keeps its forwarding cache synchronized (§4.2).

4.1 Architectural realization of evolvability
Designing Linux XIA from scratch gave us many oppor-

tunities to explore and to avoid barriers to future evolution
of our network stack, the central architectural premise of our
work. Working from this first principle led us to a radically
different design than that of the native TCP/IP stack. We
report on experiences that reinforce the power of modular
design and clarify how new principals must themselves be
architected for evolvability.

The first influential decision we made during the imple-
mentation of Linux XIA was to map each principal to a ker-
nel module. This decision, premised on modular design,
ended up interacting with XIA in unexpected ways: it led
us to (1) make XIP a truly standalone protocol, in contrast to
IP, which needs ARP and ICMP to operate; (2) have a simple
path for evolving already deployed principals; and (3) con-
ceive of routing redirects, a facility for supporting runtime
dependencies between principals.

Having principals as kernel modules helps the evolution
of already-deployed principals. For example, suppose that a
1 Note that the boxes for these principals are not contiguous
to the POSIX Socket API because one cannot create sockets
to directly drive them; one can only use these principals to
compose XIP addresses.

Figure 1: Overview of the TCP/IP and XIA stacks
in the Linux kernel.

new version of the HID principal, namely HIDv2, is released
with an enhanced, but not backwards compatible, ARP-like
protocol. One could gradually deploy HIDv2 in XIA routers
and hosts, make necessary configuration adjustments in the
network to move from HIDv1 to HIDv2, and, once HIDv1
is no longer necessary, deprecate and drop HIDv1 from XIA
routers and hosts. In the same vein, but more concretely, we
detail a four-step transition plan for XIA to move away from,
and ultimately off of, IP in §5.1.

As long as there are no static dependencies among kernel
modules of principals, each XIA router or host can load any
set of principals into the stack. This feature avoids biasing
stakeholders toward principals that the implementation arbi-
trarily requires. Even an empty set of loaded principals is
a valid configuration in Linux XIA, although obviously an
impractical one.

Although static dependencies are problematic, runtime de-
pendencies among principals emerge as a useful technique
to avoid duplicating code. For example, instead of reimple-
menting much of what the HID principal does in the AD
principal, given that the latter also needs to forward packets
to neighbors, writers of the AD principal may be tempted
to call internal functions of HIDs to deal with it. This in
turn, would effectively link AD’s implementation to a spe-
cific version of HID. Avoiding these undesirable static de-
pendencies among principals required an enhancement of
XIA’s routing algorithm, namely routing redirects, that lets
stakeholders express dependencies among principals they se-
lect at runtime. Details of this approach, as embodied in
Linux XIA’s routing mechanism, are described next.

4.2 Algorithmic realization of evolvability
Linux XIA must accomodate more advanced routing ta-

ble lookups and updates in order for evolution to be practi-
cal, since addressing and routing is maintained per-principal.
Because these challenges are not present in the legacy archi-
tecture, special packet forwarding and routing dependency
algorithms are needed. This section describes the algorith-
mic contributions that help efficiently realize evolution.

4.2.1 Fast packet forwarding
Although an XIA router may have to inspect up to four

XIDs, the maximum fanout in an XIP address, to make a
routing decision, one does not have to serialize those lookups.
This section explains how Linux XIA instantiates XIA’s for-

4



Figure 2: Linux XIA’s routing algorithm.

warding mechanism without hardware optimizations. Sub-
sequently, in §6.3, we present our performance evaluation of
this machinery against the Linux IP implementation.

A diagram of the XIA routing algorithm is presented in
Figure 2. When a packet arrives on an incoming interface,
Linux XIA’s routing fast path references the LastNode field
of the packet to obtain the sequence (in priority order) of
outbound edges from that node in the destination address.
It then looks up this sequence of XIDs in its routing cache,
which is called a DST table. If there is a cache hit, the DST
table returns a DST entry, a data structure that holds pointers
to functions that forward packets with the same signature
sequence of edges.

Otherwise, on a DST cache miss, Linux XIA falls back
to its routing slow path. Now, Linux XIA iteratively looks
up the candidate edges in the routing table. One can do
these lookups in parallel, but, without hardware support, a
software-only solution cannot take advantage of this oppor-
tunity due to the high cost of synchronizing the results. The
iterator terminates either with all edges of LastNode gener-
ating misses in the routing table (unreachable destination),
or when one of the edges is hit. In both cases, a new DST
entry for this sequence of edges is created, added to the DST
table, and returned.

While the machinery described so far is sufficient to im-
plement the XIA routing algorithm as originally specified [12],
it does not yet achieve our goal of principal independence.
To allow principals to work together but remain independent
at compile-time, we introduced the concept of routing redi-
rects. A routing redirect takes place when the iterator in Fig-
ure 2 looks up an XID and the routing table returns a “miss,”
in which case another XID is to be looked up in order to
satisfy the first lookup. This simple solution replaces static
dependencies among principals with runtime dependencies,
and can be useful in situations such as the example of the
previous section, in which the AD principal was tempted to
call the HID principal’s code. With routing redirects, the AD
principal can just redirect its XIDs that need to be forwarded
to a neighbor that returns HID XIDs, which, in turn, will del-
egate the work to HID principal. Routing redirects have ma-

tured beyond our goal of breaking static dependencies, and
have found their way into routing protocols we have been ex-
ploring as well as a flexible mechanism to split functionality
among principals; but these other uses of routing redirects
are outside the scope of this paper.

The routing algorithm explained above has two challenges
to overcome: (1) keeping the routing cache synchronized to
the routing table, and (2) working efficiently under a mem-
ory limit at the DST table.

The first challenge deals with the fact the routing table and
the DST table are two independent data structures that deal
with non-overlapping constraints. For example, the DST ta-
ble is read and written in atomic contexts, whereas the rout-
ing table is written in process context. The challenge is not
only limited to an operating system technicality; changes to
the routing table can affect the DST table in non-obvious
ways. For example, even without accounting for routing
redirects, finding the DST entries that become invalid when
an XID is added to the routing table may require a full scan
of the DST table, since adding an XID to the routing ta-
ble invalidates all DST entries that prioritize this XID at a
higher priority than their currently chosen edge. We provide
a solution to this challenge, based on fast data structures for
maintaining forests of dependencies, next.

The second challenge is that of working under stress, or
under attack. For example, an adversary could mount a denial-
of-service attack in which undeliverable packets are sent to
an XIA router each with a unique edge sequence signature.
These useless entries would require lookups on the slow path
and put pressure on the DST table to potentially drop use-
ful entries. A proper solution for this problem is still to be
investigated. The current implementation employs simple
heuristics to reclaim entries based on frequency and recency
in order to maximize the usefulness of entries.

4.2.2 Routing dependencies
We now discuss our methods to keep the routing table

and the DST table synchronized, which enables the cache
to bring efficiency gains to Linux XIA’s routing algorithm.
Our approach builds dependency chains for each edge in-
vestigated during the routing slow path and anchors these
chains on the routing table entries that keep them up-to-date.
Although developed independently, our solution is a variant
of the Data Update Propagation algorithm [6], originally de-
vised for keeping caches of dynamic web pages consistent
with underlying data.

To motivate our approach, reviewing the shortcomings of
naive solutions is instructive. Flushing the cache for each
routing table update is one possibility, but it causes routing
hiccups; suddenly the cache is empty and all packets have to
be analyzed on the slow path, one edge at a time. Principals
that have XIDs associated with sockets or other userland ob-
jects (e.g. Serval) may see corresponding update rates high
enough to render the cache a useless burden. Another pos-
sibility is to have routing table updates trigger a correspond-
ing scan of the cache for stale XIDs. But full table scans put
pressure on a machine’s memory cache subsystem; more-
over, unless the number of stale cache entries is large, the
scan itself is inherently inefficient. Finally, testing the fresh-
ness of a cache entry can itself be an involved procedure –
routing redirects and default routes are two issues which in-
troduce challenges.

Naive solutions fall short by failing to efficiently iden-

5



tify affected cache entries. Our solution does so by lever-
aging the routing slow path to incrementally build depen-
dency chains for each edge investigated (i.e., by the iterator
in Figure 2). These chains thus enumerate the set of routing
table entries and non-entries that keep a cache entry fresh.
Given that some chains eventually merge with other chains,
the final data structure is a dependency forest, and we refer
to each internal node in this forest as an anchor. When an
anchor is updated, its rooted subtree in the forest is stale and
the corresponding cache entries must be flushed.

The performance of the routing dependency algorithm is
evaluated in the routing update rate experiment we present
in §6.3.2.

5. PORTING ALIEN DESIGNS TO XIA
This section explains how three distinct network designs

never intended for compatibility with XIA can be adapted
to work and coexist in XIA. It is meant to demonstrate the
value of an interoperable meta architecture and to provide
other researchers with instructive examples on how to adapt
their own designs, or design for XIA from scratch.

In porting a network design Y to XIA, we have found that
two architectural questions drive most of the work: how can
Y ’s visible identifiers be mapped to XIDs, and how can Y
be broken into XIA principals? Whereas the first question is
simple and inevitable, it is not always obvious a priori which
of the many possible options will prove to be the best one. In
fact, experience with promising options may be required to
make a meaningful selection, noting that one implemented
interpretation of a network design in XIA does not inhibit
other interpretations of the same design in any way. Since
many interpretations of a single design can naturally coex-
ist in Linux XIA, value judgments are ultimately left to the
stakeholders of an XIA network.

The second question adds more subtlety, as it focuses on
exploring interpretations of a given design typically not con-
sidered in the original design, where the focus is self-suffi-
ciency, not interoperability. XIA’s composition of different
principals to form a single address affords principals the op-
portunity of specializing their behavior, and delegating func-
tions to other principals.

§5.1 provides a starting point, by showing how XIA can
support a legacy technology, specifically focusing on how
XIP and IP can coexist and interoperate. Then, §5.2 de-
scribes our port of Serval [25], a service-centric architecture,
and §5.3 presents our port of zFilter [16], a multicast archi-
tecture, to Linux XIA.

5.1 Case study #1: IP
Any new Internet architecture has to furnish a friendly co-

existence with IP networks in order to be deployable. A
widely used approach for introducing new functionality onto
legacy networks, which we also adopt, makes use of encap-
sulation. In this section, we describe a set of XIA principals,
called 4IDs (respectively, 6IDs), that allow XIA-enabled hosts
to communicate over a legacy IPv4 (respectively, IPv6) net-
work. A key finding, not obvious to us a priori, is that differ-
ent degrees of integration and interaction with IP networks
are suited to multiple 4ID and 6ID principal types, designed
to satisfy different stakeholders’ needs.

Given that there will be no support for XIA in the open
Internet during the early deployment of XIA, any integra-
tion must focus on retroactive compatibility; this motivation

drives the design of the U4ID principal. Names of U4ID
XIDs are the tuple (IP address, port number) followed by 14
zeros to make up the required 20-byte names. To forward to
a U4ID in an address, XIA encapsulates its XIP packet into
the payload of an IP/UDP packet whose destination IP ad-
dress and UDP port number are copied from the XID; from
there, the TCP/IP stack delivers this new packet. The XIA
stack of the destination host must have principal U4ID run-
ning and listening at the UDP port number in order to receive
the packet. After IP and UDP header decapsulation, the pay-
load XIP packet is transferred to the XIA stack.

Stakeholders operating controlled environments (e.g. dat-
acenters, campuses, corporations) may prefer to trade in some
compatibility for performance. Principal I4ID achieves this
by encapsulating XIP packets into the payload of an IP packet
and writing XIP into the protocol field of the IP header. In the
open Internet, middleboxes are likely to drop these IP/XIP
packets, but, in controlled environments, I4ID would avoid
UDP’s checksum, UDP’s 8-byte header, and port demulti-
plexing. Names of I4ID XIDs are the destination IP ad-
dresses followed by 16 zeros.

Principals U4ID and I4ID build on-the-fly tunnels through
IP networks. Although one needs these tunnels for retroac-
tive compatibility with IP, these tunnels are limiting because
the edges of the destination address of the encapsulated XIP
packet are only evaluated at the end of the tunnel; even when
all intermediate routers are XIA-enabled. In a later stage
of deployment of XIA, where a large number of hosts have
TCP/IP and XIA stacks to support both legacy IP applica-
tions and XIA applications, the limitations of tunnels be-
come salient.

Designed for a dual-stack environment, principal X4ID
leverages IP’s routing table to forward its XIDs, thereby avoid-
ing tunnelling. X4IDs have the same trailing-zero format as
I4IDs; the distinction between these principals is the for-
warding mechanism. Routers forward X4IDs by directly
looking up the corresponding IP address in the routing table
of TCP/IP stack. Principal X4ID is the tightest integration
between TCP/IP and XIA stacks, and can bridge the deploy-
ment of XIA at Internet scale because it leverages the current
BGP sessions to globally forward XIP packets.

To go further, we recommend the introduction of a general-
purpose principal, which we will also use in Serval. The
motivation is that, in contrast to opaque cryptographic iden-
tifiers typically associated with XIA, identifiers of IP (and
Serval) have a hierarchical structure, and, in particular, are
designed to support longest prefix matching. To support this
functionality in XIA we designed a simple LPM principal
to support longest prefix matching on the underlying identi-
fiers. With this, an LPM XID is a typed string of bits that
XIA routers match against a prefix tree at each hop, analo-
gous to CIDR.

Returning to 4IDs, while principal X4ID is a perfect fit
for dual stack hosts, it nevertheless perpetuates an undesir-
able dependency on IP’s routing tables for XIA-only hosts
that simply want to tap into the BGP sessions. These stake-
holders can drop the dependence on IP’s routing tables by
using the LPM principal and directly populating the LPM
forwarding table with routes from BGP sessions, achieving
the same behavior as principal X4ID, but without the need
for a TCP/IP stack. This solution is similar in nature to how
MPLS uses BGP to populate its forwarding tables. We ex-
pect that a protocol that leverages intrinsically secure identi-

6



Figure 3: Example of XIA
Serval’s three-way connec-
tion handshake between a
client and a service in-
stance.

fiers would eventually replace the use of X4ID and LPM for
this purpose; nevertheless, X4ID and LPM offer an easy de-
ployment path to bootstrap global interoperability for XIA.

A natural deployment plan for Linux XIA is to run na-
tively wherever possible and to interconnect XIA networks
through an IP-only Internet with the help of 4IDs, 6IDs, and
LPM principals as long as necessary. We have implemented
the first step of our migration plan, namely, principal U4ID
in Linux XIA. Mukerjee et al. [24] have explored the advan-
tages of incrementally deploying XIA with the help of U4ID
or I4ID principals. Our principals X4ID and LPM comple-
ment their work in the scenario they call “merged clouds”,
in which dual-stack hosts are commonplace.

5.2 Case study #2: Serval
Serval, a service-centric architecture, promotes services as

first-class entities, as described in detail in prior work [25, 2].
The main goals of Serval are threefold: support replicated
instances of a single service, support multihomed access to
services, and allow for mobility at the connection endpoints.
These goals are implemented through three respective meth-
ods: host-agnostic late binding to servers, tightly integrated
support for multiple flows per connections, and a formally-
verified migration protocol. Given that Serval’s connection
handshake exposes much of its internals and provides a good
working view of its design, we present Serval and its realiza-
tion in XIA from this angle.

A key enabling technology is Serval’s use of two distinct
types of identifiers, ServiceID and FlowID, both deployed in
a shim layer called the Service Access Layer (SAL), which
resides between the network layer and the transport layer in
the protocol stack. ServiceIDs logically represent a distinct
service, such as an HTTP connection to www.example.com,
but due to service replication, do not necessarily refer to
a unique location. ServiceIDs have a hierarchical mean-
ing in Serval, and thus they are routed using longest pre-
fix matching, like IP addresses. Unlike ServiceIDs, which
are used for end-to-end connection establishment and man-
agement, FlowIDs are used for established flows within a
service instance. These FlowIDs are flat identifiers and are
only unique with respect to the host that generated it.

Serval uses either the tuple (protocol, destination ServalID),
or (protocol, destination FlowID) to multiplex connections.
The protocol field identifies the transport protocol above Ser-
val; currently, UDP and TCP are supported. These tuples
simplify process migration because they do not bind to re-

mote identifiers, in contrast with TCP and UDP, which ex-
plicitly use source and destination IP addresses and port num-
bers to multiplex connections.

We briefly remark on security considerations in Serval.
In the Serval design, ServiceIDs lack intrinsic security, that
is, connection endpoints cannot verify each other’s identity
without a third party. To improve security, Serval uses a
nonce field that serves as a shared password between con-
nection endpoints to mitigate off-path attacks, but this can-
not prevent on-path attacks.

5.2.1 Mapping Serval to XIA
Recall that a central challenge of mapping an alien tech-

nology onto XIA is an appropriate principal decomposition.
We start with naming of services. In Serval, the use of Servi-
ceID corresponds naturally to the role of a new XID type in
XIA: it is globally scoped, has a well-defined meaning that
corresponds to a user intent, and is routable. While Serval’s
designers chose to make ServiceID a hierarchical identifier
to ensure global routing, our preferred specification is to use
flat identifiers imbued with cryptographic meaning. Our dis-
entangling of the two distinct roles of ServiceIDs, naming
services and facilitating routing, makes the analogous XIA
identifiers, which we call ServalIDs, intrinsically secure in
XIA. Thus, in our XIA interpretation of Serval, ServalIDs
are the hash of their public key, and scoping is delegated
to other, potentially more appropriate principals. For exam-
ple, the address • → AD1 → HID1 → ServalID1 scopes
ServalID1 to host HID1 located in the autonomous domain
AD1.

As for FlowIDs, these local identifiers are not germane
to XIP forwarding, and thus comprise a local XID principal
type that is used exclusively at endpoints. We retain the se-
mantics of these identifiers as used in the original Serval and
thus, when in use, it specifies the primary intent in a destina-
tion address, but is always scoped to a given host. Together,
ServalIDs and FlowIDs define the XIA Serval principal.

Finally, note that our preference toward intrinsically se-
cure ServalIDs does not preclude a fallback to hierarchical
identifiers. One solution would be to have another interpre-
tation of Serval in XIA that preserved ServiceIDs’ hierar-
chical behavior. But a more modular solution, more in tune
with the question how to break Serval into principals, sug-
gests the use of the LPM principal defined earlier to do the
longest prefix matching on its identifiers,

We can now review Serval connection establishment in the

7



context of XIA Serval. Figure 3 diagrams the packet se-
quencing of the 3-way handshake between an application at
left and XIA Serval service instances replicated in the data
center at right. The SYN packet depicted in steps 1-3, des-
tined to an arbitrary service instance, is shown having a des-
tination address with a ServalID as the sink and with optional
fallback to an LPM XID:

LPM1 ServalID1

The source address of this packet also has a Serval ID as
the sink, but with scoping, here by AD and HID, chosen by
the original application. Once this packet arrives at a ser-
vice instance, this source address becomes the destination
address in the SYN-ACK, depicted in steps 4-5, Both the
SYN and the SYN-ACK in XIA Serval correspond to Serval
SYN and SYN-ACK packets with ServiceIDs as the desti-
nation addresses. Finally, the ACK packet depicted in 6, as
well as all subsequent packets for this flow, have destina-
tion addressses with XIA FlowIDs as the sink, typically pre-
ceded by host-level scoping, here by AD2 and HID2. These
correspond to Serval packets which are addressed by Serval
FlowIDs in the SAL layer.

Our Serval addressing scheme in XIA mimics the Serval
implementation faithfully with one exception. In the SYN
packet, Serval uses a FlowID as the source, but in XIA Ser-
val we require instantiation of a ServalID at both endpoints
to perform connection setup, and thus defer relaying the pro-
posed FlowID until the third (ACK) packet of the 3-way
handshake. This small change preserves end-to-end secu-
rity guarantees, as ServalIDs have a cryptographic meaning
in XIA, whereas FlowIDs do not.

5.2.2 Discussion
Integrating Serval with XIA affords several key advan-

tages compared to the original implementation over IP. First,
elevating Serval addresses stored in the SAL shim layer to
first-class XIA addresses provides much better visibility with
respect to user intent. Whereas Serval carries its identifiers
in extension headers above IP, in XIA’s realization, those
identifiers are carried in XIA’s network layer addresses. Thus,
XIA Serval enables every router to make decisions purely
based on network layer information. As a result, placing
ServalIDs as the primary intent of connection establishment
enables routers to seamlessly realize service-layer anycast,
retaining Serval’s architectural goal of late binding. More
importantly, hardening ServalIDs with the intrinsic security
afforded by XIA eliminates the possibility of spoofed ser-
vices, and renders Serval’s (weaker) methods for prevention
of off-path attacks unnecessary. Note that this bootstrapping
procedure could also be used to harden all subsequent trans-
missions with cryptographic signing, including the FlowIDs
themselves.

5.3 Case study #3: zFilter
zFilter [16] is a multicast architecture that, in contrast to

IP multicast (RFC 1112), requires no router state related to
multicast groups. The zFilter architecture avoids this state
information by having destination addresses encode the phys-
ical links comprising a given multicast tree in a compact
Bloom filter data structure. This approach contrasts with IP
Multicast, whose packets carry have specially designated IP
destination addresses that serve as labels, matched on each

router against a list of active multicast groups. The following
paragraphs give more details on how zFilter works, how we
mapped zFilter onto XIA, and briefly discuss positive side
effects of having zFilter principal type on XIA.

The key to understanding how zFilter works is the pro-
cess that the network uses to derive Bloom filter network
addresses from multicast trees. The first step of this process
starts with each router independently associating a fixed-size
Link ID to each of its network interface. Link IDs have a
size of m bits, of which exactly k bits are one, and all other
bits are zero; destination addresses are also m bits long. The
parameters m and k are fixed for a given realization of zFil-
ter; for example, zFilter’s authors chose m = 248, k = 5 for
their implementation. Routers choose the k-one bits of their
Link IDs at random. By construction, Link IDs are unidirec-
tional, that is, each physical link has two Link IDs. Given the
topology of a network, including all Link IDs, the destina-
tion address corresponding to a given multicast tree consists
of a logical-OR union of all Link IDs in that multicast tree.

zFilter routers forward packets simply by checking the
Link IDs of their network interfaces against the Bloom filter
addresses in the packets. A router checks the presence of
the k-one bits of a Link ID in an address simply by logical-
ANDing the Link ID and the address, and comparing the
result with the Link ID. Whenever the comparison is true,
the Link ID is in the address, and the packet is transmitted
across that interface. False positives arise when all the bits
associated with a Link ID that is not in the tree happen to
be set to 1 by other Link IDs which are in the tree. The rate
of false positives can be tuned by varying m and k. Hard-
ware can check all Link IDs of a router against an address in
parallel, so the test is extremely fast.

As in the previous case studies, the porting questions drive
the work to bring zFilter into XIA. The choice of XID format
for zFilter is straightforward: zFilter XIDs are the Bloom
filter addresses. Whereas the decision on how to delegate
responsibilities to other principals leads to an elegant solu-
tion, Link IDs do not necessarily map to network interfaces
in XIA’s realization of Filter, instead, Link IDs use routing
redirects from §4.2.1 to map a zFilter XID to any XID. Our
zFilter principal employs routing redirects whenever a Link
ID matches a zFilter XID. Therefore, the zFilter principal
does not itself provide code for forwarding packets, instead
it delegates this job to an appropriate principal such as AD,
HID, and 4IDs via redirection. zFilter’s authors have con-
sidered cases in which Link IDs represent entities other than
network interfaces, but XIA zFilter’s use of routing redirects
generalizes this behavior. §6.1 showcases this feature ex-
emplifying how a single-zFilter address can emulate a three-
XID address just using routing redirects to the other XIDs.

Thanks to having directly mapped the Bloom filter ad-
dresses of zFilter onto the XIDs of our zFilter principal, any
feature that the original zFilter supports, XIA zFilter sup-
ports using the same implementation solution. Among these
features are “Link ID Tags” and “Virtual Links” which zFil-
ter authors originally considered, as well as zFormation [10],
which was designed later.

Besides enabling zFilter to delegate the final action on the
packets to other principals, XIA brings two other important
advantages to zFilter. XIP addresses can have multiple zFil-
ter XIDs, which one can leverage to reduce the number of
false positive matches of the Bloom filter. Also, XIA zFilter
cleanly interoperates with TCP/IP, as §6.1 demonstrates.

8



6. EVALUATION
To complete the case for Linux XIA as a platform that sup-

ports crowdsourced innovation, we evaluate it against three
criteria:

1. how do its architectural principles address the network-
ing needs of today and the future?

2. how effectively does the implementation realize those
architectural principles?

3. how efficient is the implementation in terms of packet
forwarding performance?

These thrusts test the design’s viability at a theoretical, im-
plementation, and performance level, respectively; a three-
level evaluation of a network architecture similar to that ad-
vocated by Wroclawski [33].

The first criterion is necessary because we view the flaws
of the legacy Internet as architectural in nature, so we must
evaluate the design principles of clean-slate architectures in
order to ensure that the same shortcomings are not realized
in the future Internet. §6.1 evaluates the design principles of
Linux XIA.

As for the second and third criteria, we evaluate the im-
plementation of Linux XIA in both a qualitative and quan-
titative manner. An architecture that cannot be adequately
instantiated is of no practical use, and an inefficient imple-
mentation does not incentivize Internet stakeholders to adopt
it. We assess Linux XIA’s ability to instantiate its architec-
tural principles in §6.2 and to achieve data plane efficiency
in §6.3.

6.1 Architectural evaluation
Developers of clean-slate Internet architectures generally

agree that the host-centric legacy Internet is indeed a mis-
match for the needs of modern networking; most advocate
elevating a new use-case to be a first-class consideration in
their architectures. In contrast, the distinguishing feature of
XIA is an agnostic approach, refusing to choose one prin-
cipal type of communication to elevate above all others. In-
stead, XIA advocates for evolution to be the central principle
in the future Internet.

The fact that XIA is welcoming of many, if not all, for-
eign architectures was not immediately clear from its con-
ception [12]. Providing an avenue for introducing new func-
tionality at the network layer in a incremental fashion en-
sures that today’s types of communication can be effectively
realized, and that as-of-yet unforeseen paradigms can be in-
tegrated. Furthermore, the Linux implementation of XIA
pushes this architectural notion of evolvability even further,
by additionally enabling interoperation of architectures. It is
this aspect of the design that distinguishes Linux XIA from
other clean-slate designs, including the classes of meta ar-
chitectures defined in §2.

We built a reliable multicast application that combines three
principals to deliver content across a heterogeneous network,
to demonstrate the value of principal interoperability. This
application employs the U4ID principal to cross an IP-only
link, the zFilter principal to duplicate packets in the network,
the XDP principal to deliver packets to sockets, and erasure
codes to make the transmission reliable. Figure 4 illustrates
this application in action.

The three-node destination address depicted at bottom left
in Figure 4 can be understood as expressing the following

Figure 4: Implemented example that showcases net-
work evolvability and principal interoperability in
Linux XIA.

intent: (1) traverse an IP-only part of the network by encap-
sulating XIA packets in UDP/IP payloads; (2) multicast the
content to multiple hosts; and (3) deliver the content to lis-
tening datagram sockets. Alternatively, the depicted single-
node destination address can be used in tandem with routing
redirects in the network to supply the same functionality. In
both cases, this allows the TCP/IP, zFilter, and XIA architec-
tures to interoperate by composing their individual strengths,
despite the fact that these architectures were never intended
to work together.

Each step in Figure 4 captures a transition in the life of an
XIP packet being sent from the server to the clients. Step
1 shows the XIP packet that the XIA stack creates once the
application writes a block of data. While routing the packet,
XIP discovers that it can only forward the packet following
the edge U4ID1 of the address, because the link between
the dual-stack server and the router is IP-only. XIP trans-
fers control to the U4ID principal, which encapsulates the
XIP packet into the payload of a UDP/IP packet (Step 2),
and hands this new packet to the TCP/IP stack. Once the
packet arrives at the router (Step 3), the TCP/IP stack hands
the packet back to the U4ID principal running at the router.
The U4ID principal at the router decapsulates the packet,
and hands the new packet to the XIA stack to route the new
packet. XIP decides on following the edge zF1, which leads
to duplicating the packet (Step 4), and sending the copied
packets toward the two clients. Once the packets arrive at the
clients (Step 5), the XDP principal identifies listening data-
gram sockets to which the data must be delivered. In order to
make the multicast transmission reliable without backchan-
nel feedback, our application employs erasure codes as ad-
vocated in the Digital Fountain work [4].

This application serves as a proof of concept that XIA has
a strong notion of evolvability and that Linux XIA extends
this idea to allow interoperation and collaboration. Thus we
assert that Linux XIA can act as a meta architecture that in-
cubates networking ideas, old and new, and encourages co-
operation, thereby enabling crowdsourced innovation.

6.2 Implementation evaluation
To assess the efficacy of Linux XIA as an implementation,

this section offers a qualitative evaluation in terms of its ca-
pability to realize the desired architectural features espoused
in §3: deployability and evolvability.

9



In order for a new network architecture to be a feasible
replacement for TCP/IP, it must be deployable. For a practi-
cal multi-step deployment plan, we refer the reader to §5.1.
Since the first step of this plan has been implemented, Linux
XIA already interoperates with the legacy Internet architec-
ture. Furthermore, since Linux is widely used in network ap-
pliances, routers, and end hosts, Linux XIA can be broadly
deployed through updates of the Linux kernel.

Once Linux XIA is initially deployed, new functional-
ity should be added incrementally such that hosts with new
principals are still able to communicate with hosts that have
not yet been updated. Linux XIA supports incremental de-
ployment in three ways. First, DAG addresses were imple-
mented with compatibility fallbacks in mind, whereby mul-
tiple edges can be considered simultaneously using the fast
routing algorithm described in §4.2.1. Second, principals
can be loaded and unloaded on-the-fly because they are im-
plemented as kernel modules; consequently, principals can
be introduced and deprecated with a minimum of, or no,
downtime. Third, the routing dependency forest efficiently
flushes stale routing cache entries as described in §4.2.2.
This is especially useful in network settings with constant
churn, for example, where the XIDs of a principal are up-
dated on a rolling basis.

However, this deployment plan is only a specfic case of
a more general and powerful principle at work, which we
call architectural embedding. This is the mechanism through
which Linux XIA fulfills the promise of evolvability that is
at the heart of the design. We have successfully embed-
ded three distinct architectures into Linux XIA (§5), and
whitepaper-ported NDN [15], a content-centric architecture,
and ANTS [31], an early meta architecture. These latter
ports are documented in [22, Sections 4.3 and 4.4].

NDN embodies a design that is difficult to instantiate on a
translating meta architecture without losing some of its char-
acteristics, but ultimately proved amenable to XIA. For ex-
ample, there are anonymity implications associated with the
absence of source addresses in NDN that are unlike other
architectures we have ported to XIA. Moreover, NDN ab-
stracts the network as an infrastructure that stores and re-
trieves content within a hierarchical naming structure, which
is not inherently built into XIA. Still, these features can be
ported to Linux XIA by taking advantage of the fact that XIA
does not require source addresses, and by leveraging each
principal’s ability to define its own addressing scheme. The
hierarchical naming scheme is supported by hashing content
names to XIDs, and leaving names in NDN headers for the
original NDN routing algorithm to interpret.

As meta network architectures, ANTS and XIA share some
common ground in terms of their motivation and solutions.
Like XIA, ANTS aims to lower barriers to evolve the net-
work layer, but does so by supporting mobile code to define
new factors. Mobile code requires a significant amount of
effort to design a code distribution protocol and a run-time
environment to deal with security issues. Still, ANTS can
be ported to XIA by choosing the ANTS XID to be the type
field of an ANTS packet, which is the cryptographic hash
of the forwarding code that should be applied to packets of
that type. This turns out to be a natural fit in Linux XIA:
it defines a single class of intrinsically secure identifiers,
and seamlessly interoperates with scoping principals such
as ADs, HIDs, and 4IDs. ANTS is much more expressive
than the other architectures that have ported to Linux XIA,

yet still fits within XIA’s framework. In spite of the strong
evidence that Linux XIA can embed many different archi-
tectures, a proof that it can do so universally, i.e., embed any
architecture, is elusive. Advancing the theory of network ar-
chitecture, wherein such statements could be rigorously for-
mulated and potentially proven, is part of our future work.

Implementing XIA in the Linux kernel afforded us to lever-
age code that has been developed over decades to lower the
development barrier. For example, the three principals used
in our exemplifying demo (§6.1) required only a modest en-
gineering effort: the U4ID principal took 480 lines of source
code, the zFilter principal 437 lines, and the XDP principal
724 lines according to SLOCCount [32]. We also reused
the full POSIX API, the kernel module mechanism, and the
hardware abstraction layer available in the kernel to achieve
three goals: (1) provide XIA applications a rich API, (2)
clearly scope principals code to avoid static dependencies,
and (3) be fully independent of TCP/IP. None of these fea-
tures are available in the XIA prototype [12].

The lessons learned here are that Linux XIA is deployable
today, there is strong evidence that Linux XIA can embed
many different architectures, and the Linux kernel affords
principal developers a rich development environment.

6.3 Performance evaluation
Our forwarding performance evaluation consists of sim-

ulating an environment comparable to that seen by a core
router, and measuring the impact of various key parameters:
Internet users’ preferences over destinations, packet sizes,
different addresses, and update rates of the routing table on
forwarding performance. We benchmark all these measure-
ments against the mature Linux implementation of IP.

6.3.1 The testbed
This section covers three aspects of our experiments: how

we simulated the conditions a core router sees, the software
and hardware infrastructure we used, and the conditions un-
der which we took the measurements.

Our experiments simulate a core router in which input
ports are abstracted as packet writers (PWs) and output ports
keep counters of successfully routed packets. We take as
possible destinations the 462,150 CIDR blocks obtained from
a recent Route Views snapshot [30]. All PWs choose des-
tinations according to a Zipf distribution over these CIDR
blocks to account for the popularity of the destinations. The
output port for each CIDR block is chosen uniformly at ran-
dom. All IP experiments reference IP addresses within these
CIDR blocks; XIA experiments pessimistically map each
CIDR block to a distinct AD XID, and reference these as
destinations2. Before each run, we populate the IP and XIP
routing tables with appropriate forwarding entries for each
CIDR block.

Our experiments use a variety of representative XIP ad-
dress formats to assess the overhead of XIP packet process-
ing. The VIA address format considers the simple case of
one-level AD-based scoping, as described in §3, and the for-
mats FB0 through FB3 consider the case of AD fallback with
addresses using from 0 to 3 fallback edges, respectively.

Our experiments ran on a single machine with the router
and PWs isolated by Linux Containers (LXC) [19], a light-
2We use ADs in the XIA evaluation since this is the principal
on which core routers are mostly likely to forward, so we
view routing on ADs as having a representative lookup cost.

10



0 1 10 100 1K 10K 100K

●

●
●●
●

●
●

● ●

●
●

●●
●●

●

●

●

●

●

●

●

●

● ●●
●●

●
●

●

●

●

0

250

500

750

1000

IP
F

B
0

F
B

1
F

B
2

F
B

3
V

IA IP
F

B
0

F
B

1
F

B
2

F
B

3
V

IA IP
F

B
0

F
B

1
F

B
2

F
B

3
V

IA IP
F

B
0

F
B

1
F

B
2

F
B

3
V

IA IP
F

B
0

F
B

1
F

B
2

F
B

3
V

IA IP
F

B
0

F
B

1
F

B
2

F
B

3
V

IA IP
F

B
0

F
B

1
F

B
2

F
B

3
V

IA

Update rate (entries per second)

T
ho

us
an

d 
pa

ck
et

s 
pe

r 
se

co
nd

●

●

●

●

●

●

0

500

1000

1500

2000

2500

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Zipf exponent

T
ho

us
an

d 
pa

ck
et

s 
pe

r 
se

co
nd

Stack

IP

XIA

Figure 5: Comparing XIA to IP. Fixed parameters: 256-byte packets, 4 ports. (left) Effects of varying routing
table update rate and destination address type. (right) Varying the distribution of destination addresses.

weight virtualization technology. LXC has been used by oth-
ers to simplify experiments and make them reproducible [18,
14, 5], and has helped us to focus on the cost of routing in-
stead of dealing with distracting I/O overload and hardware
features that we have not leveraged. Our brawny evaluation
server has two Intel Xeon Processors E5-2690. Each proces-
sor has 8 cores plus Hyperthreading running at 2.90GHz that
share 20MB of cache on chip, and a memory bank of 192GB
registered DDR3 at 1333 MHz with ECC. All experiments
ran with our kernel, which is a fork of Linux 3.11.0-rc7.
Our kernel and our evaluation code are publicly available
on GitHub [20, 21].

Our evaluation metric is the rate of succesfully forwarded
packets. All evaluation graphics adopt the unit packets per
second (pps) instead of throughput or goodput units, such
as bytes per second, to reflect the fact that TCP/IP and XIA
headers have different lengths. Each box in the graphics rep-
resents 20 runs of that same experiment. Further details of
the evaluation setup, and more detailed performance results
than described below, are available in the first author’s Ph.D.
thesis [22, Chapter 5].

6.3.2 The results
In spite of adding dynamically loaded principals, routing

redirects, and routing dependencies on top of XIA’s already
flexible network addresses, Linux XIA sports performance
results comparable to those of IP in our simulations of a core
router. The results hold even while accounting for differ-
ent packet sizes, more complex addresses used in XIA, and
high update rates of the routing table. In addition, the results
show that Linux XIA’s solution to routing dependencies, the
dependency forest, withstands very high update rates.

The distribution of packet addresses is the factor that shows
the most pronounced effect between the XIA and IP routing
algorithms in our experiments (Figure 5 (right)). Although
XIA only approximates IP’s forwarding performance in the
most realistic range [0.5, 1.2] of the Zipf exponent, it out-
performs IP below 0.5 and above 1.2. Linux XIA’s worst
performance against IP happens when the Zipf exponent is
0.8, in which case XIA’s median pps is only 42% of that of
IP. We believe that the this performance gap can shrink sig-
nificantly with more research, since Linux XIA is at version
1.0, and many improvements have not been explored. We
do not have a proper understanding, at the time of this writ-
ing, why Linux XIA shows a non-monotonic behavior as the

Zipf exponent varies. In the remainder of this section, we
conservatively fix the Zipf exponent at 1.0.

Beyond the distribution of addresses, we conduct sensi-
tivity analyses to quantify the impact of other variables on
forwarding performance. These experiments largely demon-
strate that packet sizes, complex addresses, and update rates
(Figure 5 (left)) have a small impact on performance for both
stacks. However, the IP stack, presumably unoptimized for
this case, could not keep up with very high update rates, and
as such has no box in column 100K of Figure 5 (left). The
advantage of IP over XIA is in accordance with Figure 5
(right) when the Zipf exponent is 1.0.

We do not yet have adequate justification for the surpris-
ing performance of VIA forwarding shown in the left panel
of Figure 5, as it seems no easier to forward VIA packets
than FB0 packets. Although our missing justification for this
better performance is vexing, this shows that there is room
for improving Linux XIA’s overall performance, which we
will investigate in future work.

While our experiments are preliminary, they do make the
case that Linux XIA is already a viable platform for explo-
ration of network principals. In addition, we do not see a
fundamental barrier holding XIA back from matching the
performance of IP. We believe that the performance gap is
rooted in the fact that Linux XIA is much less polished than
Linux IP at this stage. Therefore, closing this gap could be a
matter of time, implementing solutions available in the liter-
ature, e.g., [8, 35, 13].

7. CONCLUSIONS
Through a Linux implementation, the porting of diverse

alien designs, a demonstration of interoperability, and per-
formance benchmarks, we have tested the previously un-
supported claim of the evolvability of the XIA framework,
which we re-classify as a meta architecture. We view this
evaluation of XIA as successful based on the fact that it has
met our imposed challenges while remaining largely faithful
to its original description [12]. This experience has provided
us with deeper insight into XIA and has corroborated our
view of an interoperable meta architecture being a catalyst
to bring future Internet architectures closer to fruition.

Believing that the community at large is well-placed to
both crowdsource and evaluate emerging efforts, we have
made a consistent effort not to favor any one principal above

11



another in the implementation of Linux XIA, but to have
a level playing field for all principals. This lack of bias
has guided all of our implementation choices, for example,
Linux XIA does not require any principal to be loaded into
the kernel, which leaves principal selection entirely to stake-
holders. Ultimately, we expect that the aggregate of utility
functions of stakeholders would select and evolve the set of
principals deployed in large scale in an XIA Internet.

Those awaiting the arrival of a clean-slate replacement ar-
chitecture may wish to consider reining in their expectations.
Our view is that a winning architecture arriving in a single-
focus form as TCP/IP did for host abstractions, or as NDN
proposes to do for content, is implausible. As we amass ex-
perience with Linux XIA, we have come across a number
of interesting ideas for principals that would benefit only a
small subset of stakeholders. These narrow principals have
led us to the idea that Linux XIA could end up becoming
home to a collection of minimal-form principals (e.g., the
LPM principal) that rely on each other to properly work, and,
therefore, maximize value to stakeholders when considered
in toto.

Finally, not only do principals add value by themselves,
they also increase the value of other principals. For exam-
ple, 4ID principals bridge principals NDN and Serval to IPv4
networks; similarly, NDN and Serval motivate the use of
4IDs in the first place. These network effects could turn out
to be the greatest source of value of Linux XIA since they
can even increase the value of already deployed principals.

8. ACKNOWLEDGMENTS
We would like to thank Sharon Goldberg, Orran Krieger,

Peter Steenkiste, and the rest of the XIA team for feedback
on our research and drafts of this paper, as well as Erik Nord-
ström for helping us with Serval’s internals. This research
was supported by the National Science Foundation under
awards CNS-1040800, CNS-1345307 and CNS-1347525.

9. REFERENCES
[1] T. Anderson, L. Peterson, S. Shenker, and J. Turner.

Overcoming the Internet impasse through virtualization.
IEEE Computer, 38(4), 2005.

[2] M. Arye, E. Nordström, R. Kiefer, J. Rexford, and M. J.
Freedman. A formally-verified migration protocol for
mobile, multi-homed hosts. In IEEE ICNP, 2012.

[3] J. Blömer et al. An xor-based erasure-resilient coding
scheme. Technical Report TR-95-48, ICSI, 1995.

[4] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A
digital fountain approach to reliable distribution of bulk
data. In ACM SIGCOMM, 1998.

[5] C. M. S. Cabral, C. E. Rothenberg, and M. F. Magalhães.
Reproducing real NDN experiments using mini-CCNx. In
ACM SIGCOMM Workshop on Information-Centric
Networking (ICN), 2013.

[6] J. Challenger, A. Iyengar, and P. Dantzig. A scalable
system for consistently caching dynamic web data. In IEEE
INFOCOM, 1999.

[7] J. Crowcroft, S. Hand, R. Mortier, T. Roscoe, and
A. Warfield. Plutarch: An argument for network pluralism.
In ACM SIGCOMM Workshop on Future Directions in
Network Architecture, 2003.

[8] M. Dobrescu et al. RouteBricks: Exploiting parallelism to
scale software routers. In ACM SIGOPS Symposium on
Operating Systems Principles (SOSP), 2009.

[9] N. Feamster, J. Rexford, and E. Zegura. The road to SDN:
An intellectual history of programmable networks. ACM
Queue, 11(12), 2013.

[10] A. H. Ghani and P. Nikander. Secure in-packet Bloom filter
forwarding on the NetFPGA. In European NetFPGA
Developers Workshop, 2010.

[11] A. Ghodsi et al. Intelligent design enables architectural
evolution. In ACM HotNets, 2011.

[12] D. Han et al. XIA: Efficient support for evolvable
internetworking. In USENIX NSDI, 2012.

[13] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: a
GPU-accelerated software router. In ACM SIGCOMM,
2010.

[14] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and
N. McKeown. Reproducible network experiments using
container-based emulation. In ACM CoNEXT, 2012.

[15] V. Jacobson et al. Networking named content. In ACM
CoNEXT, 2009.

[16] P. Jokela, A. Zahemszky, C. E. Rothenberg, S. Arianfar,
and P. Nikander. LIPSIN: Line speed publish/subscribe
inter-networking. In ACM SIGCOMM, 2009.

[17] T. Koponen et al. Architecting for innovation. ACM
SIGCOMM CCR, 41(3), 2011.

[18] B. Lantz, B. Heller, and N. McKeown. A network in a
laptop: rapid prototyping for software-defined networks. In
ACM HotNets, 2010.

[19] Linux Community. LXC (linux containers) 0.9.0.
http://linuxcontainers.org/, 2013.

[20] M. Machado. Linux XIA.
https://github.com/AltraMayor/XIA-for-Linux, 2013.

[21] M. Machado. Network evaluation environment.
https://github.com/AltraMayor/net-eval, 2013.

[22] M. Machado. Linux XIA: An Interoperable Meta Network
Architecture. PhD thesis, Boston University, May 2014.

[23] N. McKeown et al. OpenFlow: enabling innovation in
campus networks. ACM SIGCOMM CCR, 38(2), 2008.

[24] M. K. Mukerjee, D. Han, S. Seshan, and P. Steenkiste.
Understanding tradeoffs in incremental deployment of new
network architectures. In ACM CoNEXT, 2013.

[25] E. Nordström et al. Serval: An end-host stack for
service-centric networking. In USENIX NSDI, 2012.

[26] B. Raghavan et al. Software-defined Internet architecture:
decoupling architecture from infrastructure. In ACM
HotNets, 2012.

[27] B. Raghavan, T. Koponen, A. Ghodsi, V. Brajkovic, and
S. Shenker. Making the internet more evolvable. Technical
Report TR-12-011, ICSI, 2012.

[28] R. Sherwood et al. Can the production network be the
testbed? In USENIX OSDI, 2010.

[29] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J.
Wetherall, and G. J. Minden. A survey of active network
research. IEEE Communications Magazine, 35(1), 1997.

[30] University of Oregon. Route views project.
http://www.routeviews.org/, 2013.

[31] D. J. Wetherall. Service Introduction in an Active Network.
PhD thesis, Massachusetts Institute of Technology, 1999.

[32] D. A. Wheeler. SLOCCount 2.26.
http://www.dwheeler.com/sloccount/, 2004.

[33] J. Wroclawski. All hat, no answers: Some issues related to
the evaluation of architecture. Talk at the Spring ’13 NSF
FIA PI meeting. Slides at http://www.nets-fia.net/
Meetings/Spring13/FIA-Arch-Eval-JTW.pptx.

[34] J. Zander and R. Forchheimer. Softnet – an approach to
high level packet communication. In ARRL Computer
Networking Conference, 1983.

[35] D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G.
Andersen. Scalable, high performance Ethernet forwarding
with CuckooSwitch. In ACM CoNEXT, 2013.

12

http://linuxcontainers.org/
https://github.com/AltraMayor/XIA-for-Linux
https://github.com/AltraMayor/net-eval
http://www.routeviews.org/
http://www.dwheeler.com/sloccount/
http://www.nets-fia.net/Meetings/Spring13/FIA-Arch-Eval-JTW.pptx
http://www.nets-fia.net/Meetings/Spring13/FIA-Arch-Eval-JTW.pptx

	Introduction
	Meta architecture taxonomy
	XIA in a nutshell
	Linux XIA
	Architectural realization of evolvability
	Algorithmic realization of evolvability
	Fast packet forwarding
	Routing dependencies


	Porting alien designs to XIA
	Case study #1: IP
	Case study #2: Serval
	Mapping Serval to XIA
	Discussion

	Case study #3: zFilter

	Evaluation
	Architectural evaluation
	Implementation evaluation
	Performance evaluation
	The testbed
	The results


	Conclusions
	Acknowledgments
	References

