
Trace-Driven Analysis of ICN Caching Algorithms
on Video-on-Demand Workloads

Yi Sun⊗, Seyed K. Fayaz†, Yang Guo⊗, Vyas Sekar†
Yun Jin�, Mohamed Ali Kaafar∗, Steve Uhlig◦

⊗ ICT/CAS, † CMU, � PPTV, ∗ NICTA, ◦ QMUL
{sunyi, guoyang}@ict.ac.cn, seyed@cmu.edu, vsekar@andrew.cmu.edu

yunjin@pptv.com, dali.kaafar@nicta.com.au, steve@eecs.qmul.ac.uk

ABSTRACT
Even though a key driver for Information-Centric Networking
(ICN) has been the rise in Internet video traffic, there has been sur-
prisingly little work on analyzing the interplay between ICN and
video – which ICN caching strategies work well on video work-
loads and how ICN helps improve video-centric quality of experi-
ence (QoE). In this work, we bridge this disconnect with a trace-
driven study using 196M video requests from over 16M users on
a country-wide topology with 80K routers. We evaluate a broad
space of content replacement (e.g., LRU, LFU, FIFO) and content
placement (e.g., leave a copy everywhere, probabilistic) strategies
over a range of cache sizes.

We highlight four key findings: (1) the best placement and re-
placement strategies depend on the cache size and vary across im-
provement metrics; that said, LFU+probabilistic caching [37] is a
close-to-optimal strategy overall; (2) video workloads show con-
siderable caching-related benefits (e.g., ≥ 10% traffic reduction)
only with very large cache sizes (≥ 100GB); (3) the improvement
in video QoE is low (≤ 12%) if the content provider already has
a substantial geographical presence; and (4) caches in the middle
and the edge of the network, requests from highly populated re-
gions and without content servers, and requests for popular content
contribute most to the overall ICN-induced improvements in video
QoE.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed sys-
tems—Distributed applications

General Terms
Design, Management, Measurement, Performance

Keywords
Information-centric networking; caching; Internet video

1. INTRODUCTION
Many future Internet architectures incorporate key information-

centric networking (ICN) concepts (e.g, [6, 12, 27, 31, 33]). This is
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rooted in the observation that Internet traffic consumption is largely
content driven, as users largely care about “what” content they want
as opposed to “where” the content is delivered from. This decou-
pling promises to simplify several aspects of networking today by
eliminating complex optimizations required by CDNs, providing
intrinsic trust embedded in the content itself rather than network
sources, and enabling the network to handle larger traffic volumes.

This motivation for ICN is accompanied, and driven in large part,
by the dramatic rise in Internet video traffic volumes over the last
several years [3]. In particular, the promise of ubiquitous caching
and simplified network traffic engineering that ICN architectures
offer have a natural synergy with the quality expectations and band-
width demands of Internet video workloads. In this context, there
are two natural questions that arise with respect to the interaction
between ICN and Internet video:
• How do video workloads impact network-level improvements

offered by different ICN caching strategies?
The canonical improvement metrics studied in the ICN lit-

erature include cache hit rate, origin server load reduction, and
the reduction in the overall network footprint [23]. There is
a very rich literature on different aspects of caching to opti-
mize these metrics including work on content placement to de-
cide which routers on a request path should cache the content
(e.g., [18, 22, 36, 37, 43]) and content replacement to decide
how to manage the cache storage when full (e.g., [9, 42]). We
would like to understand the specific placement and replace-
ment algorithms that work well for video workloads and what
magnitude of improvement they can offer on video workloads.

• How do ICN caching mechanisms impact key video-specific
QoE metrics?

Unlike traditional Internet web workloads, Internet video in-
troduces new QoE metrics that impact user engagement such
as buffering ratio, startup latency, and average bitrate [21,34].
Going beyond the aforementioned network-centric metrics,
we would also like to understand how different ICN caching
strategies impact these key video-specific QoE metrics.

Despite the tremendous interest in both ICN and Internet video,
there has been little work on systematically answering these ques-
tions with actual video workloads and using real network topolo-
gies. Much of the ICN literature today has focused on generic Zipf-
like workloads and on small-scale topologies [44,45,49]. Similarly,
most of the Internet video literature focuses on traditional CDN-
based delivery architectures [14,21,28,34,41]. Thus, there is a gap
in our understanding of the interplay between the design space of
ICN content placement and replacement strategies and video work-
loads and QoE considerations.

This paper bridges this gap using large-scale video on demand
(VOD) request traces consisting of over 196 million video requests
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from over 16 million users from the PPTV deployment in China [8].
We evaluate a combination of seven ICN content placement [18,
22, 36, 37, 43], five content replacement schemes [9, 42], and four
different cache sizes (1GB, 10GB, 100GB, and 1TB). For each of
these scenarios, we run trace-driven simulations on a country-wide
router-level topology with around 80K routers. To the best of our
knowledge, this is the largest (in terms of the topology and number
of requests) and most comprehensive (in terms of the design space)
trace-driven analysis of ICN caching strategies on video workloads.

Running such a large-scale workload on a large topology and
a broad range of scenarios raises significant scalability challenges
for existing ICN simulation frameworks [10]. We develop a custom
request-level simulator called iCache for our analysis that provides
almost 50× improvement over state-of-the-art ICN simulation plat-
forms.

Using iCache, we answer the two high-level questions raised
above in the context of a popular video content provider (PPTV).
Our key observations are as follows:

• Across all strategies, we observe that only very large caches
(i.e., 100GB or 1TB) provide considerable (≥ 10%) reduction
in the network traffic.

• For a provider like PPTV that already has a substantial server
footprint, even with the largest cache size in our evaluations
(1TB), the overall video QoE improvement is at most 12%.

• While the best combination of content placement and replace-
ment strategies does depend on the cache size and the metric
of interest, the combination of probabilistic content placement
(Prob) and LFU content replacement (LFU) emerges as a near-
optimal strategy across all scenarios.

• We also analyze where, when, and what contributes to the im-
provement and find that: (a) caches in the middle and access
portions of the network contribute most to traffic reduction and
QoE improvement; (b) requests from highly populated regions
without content servers observe the highest QoE improvement;
and (c) requests for popular content are more likely to con-
tribute to overall ICN-induced QoE improvements.

Contributions and Roadmap: To summarize, the main contribu-
tions of our work are:
• Developing a scalable and extensible ICN simulator that pro-

vides up to 50× improvement over state-of-the-art platforms
(Section 4);

• Analyzing the impact of video workloads on canonical ICN
metrics such as traffic reduction, hit rate, and server load re-
duction over a broad combination of ICN caching strategies
(Section 5);

• Understanding the improvements that ICN caching algorithms
offer for video QoE metrics (Section 6);

• A spatiotemporal and request-level dissection of the benefits
of the best ICN strategies with respect to network-centric and
QoE-centric metrics (Section 7).

In the rest of the paper, we begin with related work in Section 2.
We describe our datasets in Section 3. We discuss some outstanding
issues in Section 8 before concluding in Section 9.

2. BACKGROUND AND RELATED WORK
In this section, we review the most relevant related work on ICN,

ICN caching algorithms, ICN evaluation platforms, and measure-
ments of Internet video. At a high level we find that while there is
a rich literature on analyzing ICN and video workloads separately,
there is little work on evaluating ICN caching mechanisms at scale

on real video workload on a large topology. Our work bridges this
gap.

ICN vision: The main ideas in ICN are decoupling content names
from locations, name-based content routing, in-network caching,
and the use of name-based binding for security. Major ICN ef-
forts include TRIAD [25], DONA [33], 4WARD [12], CCN [30],
NDN [31], and COMET [4]. Many of these envision content caches
on routers to improve user experience (e.g., lower latency) and net-
work performance (e.g., lower server load and congestion). How-
ever, these ICN architectures are not evaluated with respect to video
workloads, which is the focus of our work.

Design space of in-network caching: In-network caching plays a
key role in ICN architectures and has attracted a lot of research
along two main dimensions: content placement and content re-
placement.
A content placement strategy decides where an object should be
cached across routers on the request path (i.e., the sequence of
routers from the content origin to the requesting client). We study
seven specific content placement strategies: (1) leaving a copy
everywhere (LCE) [19]; (2) leaving a copy only on the immedi-
ate downstream router when there is a hit on an upstream router
(LCD) [36]; (3) leaving a copy on some randomly chosen router
along the request path (Rand) [22]; (4) constant probability of
caching on each router (Prob) [37]; (5) the probability of caching
on a router is a function of its distance from the origin server and
the shared storage capacity of the path (PProb) [43]; (6) using
centrality-based measures where the router with the largest value
of betweenness1 will keep a copy (Centrality) [18]; and (7) a hy-
brid approach where the probability that a router caches an object is
a function of both the router’s betweenness and the content’s pop-
ularity (Cross) [48].
A content replacement strategy captures how objects are evicted
when the cache is full. We consider five such strategies: (1) least-
recently used (LRU); (2) first-in first-out (FIFO); (3) least fre-
quently used (LFU); (4) time to live (TTL) [42], where an object’s
time to live (TTL) on a router’s cache depends on object’s popular-
ity and router’s location; and (5) largest item first (Size) [9].

Notably, content placement and replacement are fundamentally
different from strategies for content staging, which essentially pre-
populate or initialize the caches. In other words, content placement
and replacement strategies together determine the steady state be-
havior of the caches rather than the initial conditions that may only
impact a few initial requests.

ICN evaluation: There are many ICN evaluation platforms such
as ndnSIM [10], ccnSim [20], DEC [5], and Mini-CCNx [15].
Unfortunately, our experiences showed that these cannot handle
the scale of the workload and the topology we study in this pa-
per. Thus, we developed a custom request-level simulator called
iCache. Prior works have also considered trace-driven evaluations
of ICN caching (e.g., [23,49]). Our work extends them in three sig-
nificant ways. First, our evaluation considers a much larger topol-
ogy and request workload. Second, we consider a broader spec-
trum of placement and replacement strategies. Finally, we focus on
video-specific aspects of ICN.

Video over ICN: Recent work has extended ICN to support video
streaming [35, 38], optimized ICN-based streaming on mobile de-
vices [26], and has suggested cooperative caching to improve video
delivery [39]. Closer to our work, Fricker et al. [24] found that
1Betweenness is a measure of a node’s centrality in a network. It
is equal to the ratio of shortest paths from all vertices to all others
that pass through that node.
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Nodes Edges Avg. Degree Diameter Avg. Path Length
82,726 167,921 4.06 22 8.26

Table 1: Attributes of router-level network topology.

VOD workloads are cacheable at the edge of the network using
synthetic traffic and a small, synthetic hierarchical topology. Sim-
ilarly, Ando and Nakao [11] evaluated the performance of caching
on a YouTube workload collected at a campus network gateway.
Our analysis uses much larger traces and a real country-wide topol-
ogy.

Internet video measurement: Several studies have analyzed the
content popularity in video workloads (e.g., [13,17,29,50,51]) and
suggest implications for caching in CDN and edge proxy architec-
tures. However, they do not consider ICN-like ubiquitous caching.
Recent studies analyze the impact of QoE metrics such as buffer-
ing, startup delay, and average playback bitrate on user engage-
ment [21,34]. There are also proposals to improve QoE by design-
ing better adaptive streaming protocols (e.g., [32]) and intelligently
using multiple CDNs [40, 41]. However, these focus on existing
CDN-based delivery architectures while we focus on the interplay
between ICN and video QoE.

3. DATASET DESCRIPTION
In this section, we describe how we collected the datasets used

to answer our two motivating questions. These datasets, a router-
level network topology and session-level statistics of video views,
were collected from the operational platform of PPTV [8]. PPTV
is a leading online video content provider in China. (While PPTV
originally started as a P2P delivery platform, today it is a well-
provisioned commercial content provider with traditional CDN-
style servers and P2P.) PPTV has a user base of more than 227
million users, and its active user base is 49.7% of the total num-
ber of Internet users in China. The average viewing time per user
per day is more than 2.5 hours, making it one of the most popular
content portals in China [7].

3.1 Topology data
To collect a router-level network topology, we instrumented

the PPTV client software with traceroute capabilities. After
PPTV released this instrumented software, more than 150 million
users (i.e., 66% of PPTV users) updated their software. Out of
the users with the updated client software, we randomly selected
1.68 million users for conducting traceroute measurements. These
clients issue traceroutes to other peers, the CDN servers deployed
by PPTV, as well as specific IP prefixes associated with Chinese
ISPs. To balance the tradeoff between measurement overhead and
coverage, we used simple heuristics in choosing the destinations
and the time to issue traceroutes. Some examples of such heuris-
tics include avoiding duplicate requests to peers within previously
covered IP prefixes and issuing traceroutes when the network is less
congested (e.g., early morning).

The topology used in this paper is based on traceroute measure-
ments collected over a 2-month period. Given the popularity and
spread of PPTV clients in China, we have a unique high-coverage
map of a country-wide network covering 89 ISPs, 6583 PoPs, and
all the 31 provinces in mainland China. Table 1 summarizes the
key characteristics of the network topology.

3.2 Video views data
We also collected a dataset of video-on-demand (VOD) requests

from PPTV server logs. Each log record represents the summary
statistics of a single video request, which is pushed to log collection
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Figure 2: Distribution of incoming requests and number of
requests served across different provinces in China. The
“heatmap” scale represents the percentage of client requests
originating in a given province, and the annotated text with
each province is the percentage of requests served by PPTV
servers in that province.

servers when the video session ends. There are four main categories
of relevant entries:

1. Client-specific information such as a (unique) client ID, client
IP, client ISP, client location city/province, client’s access net-
work type (e.g., ADSL, WiFi, 3G), and client terminal type
(e.g., PC, Tablet, Smartphone).

2. Server-specific information such as the PPTV server IP and the
ISP this server is located in.

3. Session-level information such as video name, start time of the
request, view duration, and total bytes transferred during this
video session.

4. Video QoE information such as:
• Buffering ratio or the fraction of the session time spent on

buffering = BufferingTime
TotalViewTime

;

• Average bitrate, which is TotalBytesDownloaded
TotalPlayTime

; and
• Join time or the delay between the request and video start

= StartTimeOfPlay − RequestTime .
PPTV shared with us a (uniformly-at-random) sampled dataset

over a two-week period with more than 196 million viewing in-
stances involving more than 16 million users. (Due to business con-
siderations, we cannot reveal the total number of sessions.) Overall,
these users watched more than 500K unique videos with the total
size of unique content views being 137TB. To put this in context,
a large 1TB cache can hold < 1% of the entire content population.
Figure 1 depicts the distribution of user access to video content: a
Zipf-like distribution with the parameter α = 1.174.
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Figure 2 illustrates the spatial distribution of content access by
PPTV users, showing the percentage of content access and the per-
centage of requests destined to PPTV content servers on a per-
province basis. In Figure 2, darker colors indicate higher content
requests, which matches very well with the Internet user population
distribution in China.

4. SIMULATION SETUP
In this section, we discuss iCache, our simulation platform (writ-

ten in C++) for large-scale ICN evaluations.2 iCache is built with
two design goals in mind: scalability and extensibility. First, in
terms of scalability, iCache completes simulation of a very large
network with tens of thousands of routers, tens of millions of ICN
clients, and billions of content-view logs within a reasonable period
of time (less than 5 hours). In contrast, existing platforms may take
more than 250 hours for a similar simulation. Second, with respect
to extensibility, in addition to supporting several existing caching
and routing strategies, iCache provides APIs to plug in new algo-
rithms.

We begin by documenting our experiences with existing simu-
lation platforms that motivated us to develop iCache. Then, we
describe the main design decisions underlying iCache and validate
its scalability, fidelity, and extensibility.

4.1 Need for a new ICN simulation platform
There are several ICN simulation platforms currently in use in-

cluding CCNx [1], ccnSim [20], DCE [5], mini-CCNx [15], and
ndnSIM [10]. ndnSIM is generally considered to be the most scal-
able ICN platform; e.g., as reported by Afsanyev [10] et al., CCNx,
ccnSim, DCE, and mini-CCNx can only support ICN simulations
with a few hundred routers, and cannot be used for our large-scale
evaluation with 80,000+ routers.

Thus, we originally considered using ndnSIM. Unfortunately,
even ndnSIM was not sufficiently scalable for the large-scale trace-
driven evaluation we needed to perform. For instance, a single
trace-driven run with one content placement and one content re-
placement strategy took more than 125 hours on a Xeon 2.13GHz
machine with 1TB of memory running Linux. This performance
is clearly not sufficient for us to practically meet our goal of com-
prehensively evaluating the design space of content placement and
replacement strategies with different cache sizes. With 7 content
placement, 5 replacement strategies, and 4 distinct cache sizes, us-
ing ndnSIM would roughly take 125× 140 = 17, 500 CPU hours.

4.2 Design of iCache
In designing iCache, we make three key decisions:

• ndnSIM does a detailed packet-level simulation carefully cap-
turing every content packet and content response. This leads
to a significant number of events in the system and also in-
creases memory consumption at high request rates. As a first
step, we simplify the simulation by moving to a request-level
rather than a packet-level simulation. One concern is that we
may not be able to replicate fine-grained QoE metrics with a
flow-level simulation. Fortunately, we use a data-driven ex-
trapolation methodology for computing QoE metrics, as we
discuss later in Section 6, that is amenable to a flow-level
analysis. Second, ndnSIM provides a complete implementa-
tion of all ICN functionalities; e.g., checks for content-level
security. These additional features, while relevant for other

2An open-source version of iCache will be available at
the following URL: http://fi.ict.ac.cn/firg.php?n=
Member.Source.
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Figure 3: iCache architecture.

applications, significantly add to the per-request processing.
We simplify the per-node operations and do not implement the
content-integrity steps.

• To emulate complex content routing protocols such as OSPF
extensions, ndnSIM effectively recomputes each routing table
on each cache eviction event. This creates a large number of
routing protocol messages and increases the processing over-
head. However, for many common ICN routing strategies (e.g.,
shortest path to servers [23,47]) the routing table does not need
to be updated. We, therefore, precompute the routing tables
and use them throughout the simulation.

• Finally, rather than a node-centric software architecture, we
move to a “tier”-based architecture where we group the same
functional modules on different nodes into a single layer such
as caching layer, forwarding layer, and routing layer as shown
in Figure 3. Unlike other simulators, where each simulated
ICN node maintains its own routing, caching, and forwarding
tables, this grouping enables the use of global tables that are
shared by all routers avoiding redundant entries. In turn, this
reduces the memory consumption of the simulation. Further-
more, it improves the locality of memory accesses and thus
minimizes I/O operations, and also improves the processing
time of each simulated router.

Figure 3 depicts the architecture of iCache including three func-
tional tiers (i.e., the operation, dispatcher, and service tiers) as de-
scribed next. The operation tier provides the core caching and rout-
ing functions. The dispatcher schedules the events in the simula-
tion. Finally, the service tier provides a common set of functions
such as queries on network topology and content properties as well
as collecting statistics.

Here we focus on the operation tier. The caching layer imple-
ments the functionality of a content cache; i.e., basic operations of
individual caches such as content placement/replacement. We have
implemented seven content placement and five content replacement
algorithms (see Section 5). The forwarding layer processes content
request and reply messages and implements the basic forwarding
functions such as receiving pending requests and forwarding the re-
sponses on the correct interfaces of each simulated router. The rout-
ing layer maintains global routing information of the network. We
have currently implemented a name-based OSPF algorithm, which
is the basic routing strategy in several ICN architectures [6,31,33].

We record several useful statistics such as the transmission path
of each request and the traffic load on each server during the sim-
ulation. We process these offline using custom scripts to generate
statistics such as cache hit rate, traffic reduction, server load reduc-
tion (Section 5), and video-related user experience metrics (Sec-
tion 6).

4.3 Validation and evaluation
Next, we evaluate iCache on three key dimensions: fidelity, scal-

ability, and extensibility.
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Algorithm LoC
LCE 17
LCD 17
Rand 23
Prob 29
PProb 38
Centrality 56
Cross 80

(a) Content placement

Algorithm LoC
FIFO 108
LFU 233
LRU 140
TTL 184
Size 139

(b) Content replacement

Table 2: Lines of code for different algorithms in iCache.

Fidelity: First, we need to ensure that the optimizations we intro-
duced in iCache do not introduce semantic bugs in the caching be-
havior. Thus, to evaluate the fidelity of iCache against ndnSim [10],
we generated several topologies and content request traces. Due to
the scalability limits of ndnSIM, we typically ran this for smaller
topologies with less than 100 nodes. Then, we observed that the
cached contents of corresponding routers and paths taken by the re-
quest exactly match across the two experiments (not shown). This
being said, we acknowledge that iCache does not provide all the
features of ndnSIM, especially in terms of advanced content rout-
ing protocols, security checks, and packet-level behaviors.

Scalability: Figure 4 shows the simulation time of a large-scale
simulation on a machine with a Xeon 2.13GHz core and 1TB
of memory running Linux. The simulation involved about 80K
routers, 16M clients, 500K videos, and 196M content requests (see
Section 3), and took ≤5 hours for different cache sizes. For com-
parison, the native ndnSIM needs 127.1 to 252.2 hours to finish the
same scale of simulations. As a point of comparison, we also in-
clude a version of ndnSIM with routing pre-computation optimiza-
tion described above. This precomputation does help significantly,
as it drop the simulation time to 7.5-132.9 hours; but this is still
almost 2× slower than iCache.

Extensibility: We evaluate the ease of adding new caching algo-
rithms to iCache by counting the lines of codes for the 7 content
placement and 5 content replacement algorithm modules written in
iCache. Table 2 shows that across all the strategies we did not need
more than about 230 lines of C++ code.

5. EFFECT OF VIDEO WORKLOADS ON
ICN

In this section, we investigate the effect of the PPTV VOD work-
load on the performance of ICN and address the following ques-
tions:

• How does cache size impact the performance of ICN caching
schemes in terms of network footprint reduction, cache hit
rates, and server load reduction given video workloads?

• What is the best combination of content placement and re-
placement algorithms for different cache sizes and across dif-
ferent performance metrics?

• Is there a near-optimal or good enough strategy that is robust
across this space of considerations?

5.1 Setup
First, we describe the simulation setup used in the rest of the

paper. There are three types of nodes in the iCache platform:
servers (i.e., content origins), consumers (i.e., content requesters),
and routers. Servers correspond to the PPTV CDN servers. (Note
that we do not consider the P2P mode in the evaluations and only
focus on the CDN mode.) There are a total of 221 servers con-
nected to the network from the same access points as in the real
deployment of PPTV. We assume each server maintains all video
contents. Consumers correspond to the PPTV clients observed in
the dataset.

Each client is attached to the access router whose IP has the
longest prefix in common with it. There are 82,726 routers each
equipped with a cache of the same size. As in many previous works
(e.g., [23,44,45,47]), we use the shortest paths to populate the rout-
ing tables of each router. Each content request is routed toward the
closest origin server, and the request is “shortcut” if the content is
found on an on-path router.

There are three key dimensions to explore here: (1) cache size,
(2) content placement strategy, and (3) content replacement strat-
egy. For (1), we consider four different cache sizes: 1GB, 10GB,
100GB, and 1TB. To put this in context, considering the total vol-
ume of different videos in our dataset is 137TB, these sizes of
caches can approximately store 0.0007%, 0.007%, 0.07% and 0.7%
of contents, respectively. As a reference point, we also consider a
zero-cache scenario. For (2), we have implemented seven different
content placement algorithms from related work: LCE, LCD, Rand,
Prob, PProb, Centrality, and Cross [18, 22, 36, 37, 43, 48]. Finally,
for (3), we consider five content replacement algorithms: FIFO,
LRU, LFU, TTL, and Size [9, 42]. This space of parameters covers
some of the relevant sizes for today’s storage caches and represents
main proposed caching strategies. In total, there are 4×7×5 = 140
combinations of these parameters.

5.2 Results
There are three main metrics used to quantify the performance

of ICN [23] that we define below. Here the subscript r refers to
a specific router and R is the number of routers. Similarly, the
subscript q refers to a specific object request and V is the total
number of video requests. The metrics are:

1. Average cache hit ratio across all routers defined as

HitRate =
∑R

r=1
Hitr

Hitr +Missesr
R

, where Hitr refers to the num-
ber of requests that router r was able to serve from its cache,
and Missesr is the number of requests that it forwarded up-
stream due to cache miss.

2. Total reduction in the network footprint or the total num-
ber of byte-hops saved via in-network caching defined as:

TrafficReduction =
∑V

q=1 (HopsNoCacheq−HopsICN q )×Bytesq∑V
q=1 HopsNoCacheq×Bytesq

,

where HopsNoCacheq refers to the number of hops the
request would take to reach the nearest origin server, and
HopsICN q is the number of hops the request took to reach
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Figure 5: Average cache hit ratio: The cache hit rates are generally low, and the best combination of placement and replacement for
1GB, 10GB, 100GB, and 1TB are LCD +LRU, Prob +LFU, Prob +LFU, and Cross +LFU, respectively.
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Figure 6: Total traffic reduction (%): The reduction is more than 20% only with cache > 100GB. The best combination of placement
and replacement for 1GB, 10GB, 100GB, and 1TB are LCE +TTL, Prob +LFU, LCE +LFU, and LCE +LFU, respectively.

5.1 7.1 4.4 4.3 3.1 2.6 5.3

4.8 2.5 5.1 5.1 5.2 1.7 4.8

5.3 7.1 4.4 4.3 3.1 3.1 5.4

5.6 5.1 5.6 5.5 5.4 1.9 5.4

2.3 3.1 3.5 2.9 3.0 1.7 2.5

FI
FO
LF
U

LR
U

TT
L

Siz
e

LC
E

LC
D

Ra
nd

Pr
ob

PP
rob

Ce
nt.

Cr
os
s

(a) 1GB

8.8 14.7 10.6 8.2 8.6 5.4 8.9

16.1 9.4 16.3 16.5 16.5 7.2 16.2

8.8 14.9 11.1 8.4 9.8 7.3 9.1

13.2 16.1 14.4 13.2 12.5 7.4 12.9

6.6 7.3 9.3 8.1 8.1 4.9 7.0

FI
FO
LF
U

LR
U

TT
L

Siz
e

LC
E

LC
D

Ra
nd

Pr
ob

PP
rob

Ce
nt.

Cr
os
s

(b) 10GB

19.5 27.5 26.9 23.9 24.6 13.3 21.3

33.7 24.1 33.5 34.1 33.9 18.8 33.8

20.7 28.4 28.5 25.9 27.7 15.2 22.7

21.9 28.8 27.7 24.7 25.0 15.2 22.8

16.6 18.3 21.9 19.8 21.2 10.9 17.6

FI
FO
LF
U

LR
U

TT
L

Siz
e

LC
E

LC
D

Ra
nd

Pr
ob

PP
rob

Ce
nt.

Cr
os
s

(c) 100GB

41.9 49.0 48.8 47.1 47.5 24.3 44.6

54.5 47.3 54.3 55.2 53.8 29.2 55.0

44.3 49.8 51.1 49.9 51.3 25.9 46.9

42.0 49.1 48.8 47.2 47.5 24.4 44.7

36.3 40.2 43.8 42.2 45.3 19.2 39.3

FI
FO
LF
U

LR
U

TT
L

Siz
e

LC
E

LC
D

Ra
nd

Pr
ob

PP
rob

Ce
nt.

Cr
os
s

(d) 1TB

Figure 7: Server load reduction (%): The reduction is substantial only when cache size is > 100GB. The best combination of place-
ment and replacement for 1GB, 10GB, 100GB, and 1TB are LCD +LRU, PProb +LFU, Prob +LFU, and Prob +LFU, respectively.

the closest location containing a copy of the video content (i.e.,
either an in-network cache or the origin server).

3. Reduction in load on the origin servers defined as: 1 −
NumCachedReq

V
, where NumCachedReq is the number of re-

quests that were served from some in-network cache.
Figures 5, 6, and 7 show the values of these three metrics across

the space of 35 caching strategy combinations for four different
cache sizes. We reiterate that such a comprehensive evaluation of
the design and parameter space would not be possible without the
scalability of iCache.

We make a few observations from these results. First, we see
that the metrics improve as the cache size grows, and, because
of the large traffic volume of videos, we observe significant ben-
efits only with 100GB or 1TB cache sizes. Note that with a 1GB
cache on each router, the average reduction of video traffic and
cache hit rate of routers is less than 3.7% and 1.0%, respectively,
across all caching strategies. However, when the cache size in-
creases to 100GB, the above metrics improve to 21.9% and 5.9%,
respectively. Second, we observe a sub-linear effect of adding more
cache capacity or a natural “diminishing returns” property, as in-
creasing the cache size by 10× provides less than 2× performance
improvement, even with the best possible strategy. Third, we do
observe that some of the more “intelligent” content placement-
replacement combinations can provide substantial improvements
over the vanilla LCE +LRU combination; e.g., with a 100GB cache
size, we observe that the best strategy is 46% better across all the

metrics. Finally, we can see that the optimal strategy can be quite
different both across the space of metrics and the cache sizes. For
instance, LCD +LRU is the best strategy w.r.t. hit rate at 1GB cache,
but Cross +LFU is the best w.r.t. hit rate at 1TB. Similarly, at 1TB,
Cross +LFU, LCE +LFU, andProb +LFU are the best strategies
w.r.t. hit rate, traffic reduction, and server load reduction respec-
tively.3 We do not yet have a simple analytical basis to explain why
the optimal combination varies, and we leave this for future work.

Correlation across metrics and cache sizes: Next, we summa-
rize how correlated the different strategies are across metrics and
cache sizes. Recall that we have 35 different combinations of con-
tent placement/replacement algorithms. Now, for a given cache size
and metric, we construct the 35-item vector with each entry denot-
ing the performance of a given combination. Then, given these vec-
tors, we compute the Pearson correlation coefficient between these
vectors for different cache sizes and metrics. In Figure 8a, we show
the correlation between each pair of metrics for a given cache size.
Similarly, in Figure 8b, we show the correlation between pairs of
cache sizes for each metric.

First, we see that hit rate and server load reduction are perfectly
correlated. This is expected, as higher cache hit rate reduces server
load. Second, we find that optimizing the server load reduction

3We found it interesting that Centrality performs poorly across dif-
ferent scenarios. We conjecture that in the strictly hierarchical
structure of the Chinese Internet, very few routers (located near
the core) have high betweenness and are selected for caching.
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does not necessarily translate into a reduction in the overall net-
work footprint. This is also expected, since the traffic reduction
depends not only on cache hits, but also on where hits occur and
whether they occur for popular vs. unpopular objects. We revisit
this in greater depth in Section 7, where we systematically dissect
the benefits of the various caching strategies. Finally, with respect
to the cache sizes, we see a natural correlation between similar
cache sizes—1GB cache is the least correlated with all other values,
and the correlation between 100GB-1TB caches is the strongest.
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Figure 8: Hitrate and server load reduction are most corre-
lated, and similar-sized caches have higher correlations.

Is there a dominant strategy? The previous results show that the
best strategy varies quite significantly across the space of cache
sizes and metrics. Given this diversity, a natural question for
ICN deployment is whether there are some strategies that are con-
sistently close to the optimal value, even if they are not always
the best. To understand this, we calculate an aggregate perfor-
mance metric that computes the average normalized distance of
each strategy from the best possible strategy for each of the 12
scenarios (i.e., 4 cache sizes and 3 metrics). Specifically, for a
given scenario s (i.e., a fixed cache size and metric), we compute a
score for a given placement-replacement combination pr relative to
the performance of the best combination Perf ∗s for that scenario:
Scorepr,s =

Perf ∗s −Perf pr,s

Perf ∗s
, where Perf pr,s is the performance

of pr on scenario s . Then, the overall score Scorepr is the mean
across all scenarios.

Table 3 shows this normalized score for the 35 caching strategies
and highlights the top three strategies. First, we see that in terms
of content replacement, LFU is the most dominant strategy. In fact,
the top 5 strategies all use LFU. Second, looking at each dimension
separately may not necessarily indicate the best strategy. For exam-
ple, for cache placement, Rand and LCD are the top two strategies,
but none of their overall combinations rank in the top-3 strategies
highlighted in the table. In particular, LCD does not work in con-
cert with LFU, which, as we saw earlier, is the best strategy for
content replacement. Similarly, we find that the combination of the
best placement (Rand) and the best replacement (LFU) strategies

FIFO LFU LRU TTL Size RowAvg
LCE 0.64 0.92 0.66 0.76 0.48 0.69
LCD 0.86 0.60 0.88 0.85 0.52 0.74
Rand 0.71 0.91 0.74 0.82 0.62 0.76
Prob 0.65 0.93 0.69 0.78 0.57 0.72
PProb 0.62 0.91 0.67 0.76 0.58 0.71
Centrality 0.38 0.43 0.43 0.40 0.30 0.39
Cross 0.66 0.92 0.70 0.77 0.52 0.71
ColAvg 0.65 0.80 0.68 0.73 0.51

Table 3: Normalized scores of each strategy across all 12 sce-
narios to identify a “dominant” strategy that is optimal or close
to optimal most of the time.

(i.e., the best row and column averages) is not the optimal strat-
egy; the global best strategy is Prob +LFU with a score of 0.93.
The Rand +LFU combination is also quite close with an averaged
normalized score of 0.91.

5.3 Summary of main findings
Our analysis of the impact of video workloads on ICN caching

metrics shows that:
• Cache sizes need to be greater than 100GB to provide signif-

icant (22% traffic reduction and 34% server load reduction)
benefit for PPTV traffic. Compared with other workloads,
video seems to require much larger cache sizes; for instance,
prior work suggests that a cache that can store 10M files on
each router can bring a 20% traffic reduction of BitTorrent con-
tent [47]. We also see a natural diminishing returns property
wherein increasing the cache 10× from 100GB to 1TB only
yields less than 2× improvement.

• The best combination of content placement and replacement
depends on the operating regime and the caching metric of in-
terest. For instance, techniques that optimize cache hit rates or
server load, do not directly yield a substantial reduction in net-
work footprint. Therefore, ISPs should carefully select their
caching strategies according to their objectives (e.g. optimiz-
ing traffic reduction or server load reduction) and their network
characteristics (e.g. cache size, hierarchical/flat topology).

• Fortunately, there exists a sufficiently dominant strategy Prob
+LFU that is close to the best possible strategy almost always.
We also find that LFU is the dominant replacement strategy.
However, the best content placement strategy is not part of the
best combined placement-replacement strategy.

6. VIDEO QUALITY OF EXPERIENCE
WITH ICN

As discussed in prior work, Internet video introduces new QoE
considerations such as buffering ratio, startup delay, and average
delivered bitrate [21, 34]. In this section, we study the effect of us-
ing ICN on video QoE using the same simulation setup as described
in Section 5.1. Specifically, we are interested in understanding:
• How do the ICN caching schemes and cache sizes impact video

QoE?
• How do the network-level metrics and the best choices from

the previous section translate into video QoE considerations?

6.1 Methodology
To understand QoE improvements of ICN, first, we need a way of

modeling the QoE that a client would perceive if its requests were
served from a specific in-network cache. In the absence of a real
caching deployment, we do not have this directly; thus, we need
some way to extrapolate the QoE metrics from our PPTV traces.
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Province Buffering ratio Avg. bitrate Join Time
SamePoP SameISP DiffISP SamePoP SameISP DiffISP SamePoP SameISP DiffISP

BJ 1 1.17 2.69 1 0.85 0.69 1 1.07 1.48
LN 1 1.33 4.01 1 0.92 0.56 1 1.03 1.49
ZJ 1 1.18 3.35 1 0.80 0.47 1 1.05 1.71
... ... ... ... ... ... ... ... ... ...
Others 1 1.17 3.18 1 0.86 0.55 1 1.06 1.52

Table 4: Normalized QoE metrics across different provinces for different server classes.

 0

 1

 2

 3

 4

 5

 6

 7

 8

1GB 10GB 100GB 1TBB
u
ff

e
ri

n
g
 r

a
ti

o
 r

e
d
u
ct

io
n
 (

%
)

Cache size

LCE+LRU
Prob+LFU

Best-Traffic-Reduction
Best-Hit-Rate

Best-Server-Load

(a) Buffering ratio

 0

 2

 4

 6

 8

 10

 12

 14

 16

1GB 10GB 100GB 1TB
A
v
e
. 
b
it

ra
te

 i
n
cr

e
a
se

 (
%

)
Cache size

LCE+LRU
Prob+LFU

Best-Traffic-Reduction
Best-Hit-Rate

Best-Server-Load

(b) Average bitrate

 0

 2

 4

 6

 8

 10

 12

 14

 16

1GB 10GB 100GB 1TB

Jo
in

 t
im

e
 d

e
cr

e
a
se

 (
%

)

Cache size

LCE+LRU
Prob+LFU

Best-Traffic-Reduction
Best-Hit-Rate

Best-Server-Load

(c) Join time

Figure 9: Improvement in different QoE metrics for different ICN caching strategies and cache sizes.

Given a specific client-router pair c, r , our extrapolation method-
ology tries to find requests in the original PPTV traces that share
similar client and server attributes [41]. For instance, if there is a
client c from Beijing on a DSL connection from China Telecom as
its ISP, and the router r chosen in the ICN caching case is also a
China Telecom router in Beijing, we select all PPTV traces where
the client-server attributes match these values and use those statis-
tics to extrapolate the QoE for the hypothetical c, r request. Then,
to predict the expected QoE for this hypothetical request c, r , we
use the median value over requests with similar attributes. (For all
metrics other than buffering ratio, we use the median. For buffering
ratio, the median is typically zero, and we use the average.)

Ideally, we would like to pick the requests that match every pos-
sible client and server attributes. However, we run into a classic
“curse of dimensionality” problem where the data becomes quite
sparse as we increase the number of dimensions. Furthermore, for
some provinces (e.g., TB for Tibet), client terminals (e.g,. mobile),
and client connection types (e.g., 3G), we have only few requests.

Given the above constraints, we take the following heuristic.
First, we only focus on the dominant client terminal and connec-
tion types; in this case it is desktop clients on broadband connec-
tions. Second, we exploit the hierarchical structure of the Chinese
Internet topology to focus on three classes of servers rather than at-
tempt to match all possible server attributes. (The three main ISPs,
ChinaTelecom, ChinaUnicom and China Mobile organize their net-
works in a hierarchical manner and connect to one another at a
higher level. Other small ISPs interconnect via one of these major
ISPs.) Specifically, we partition the content-view dataset into three
non-overlapping categories based on the locations of the client and
the server IPs:

1. Same PoP (SamePoP): The client and the server are in the same
PoP (point of presence) of the same ISP;

2. Same ISP, but different PoPs (SameISP): The client and the
server are in the same ISP network but in different PoPs;

3. Different ISPs (DiffISP): The client and the server are in dif-
ferent ISPs.

Finally, we use the client location at a province-level granularity.
To this end, for each province with a sufficiently large number of re-
quests, we consider the servers in one of the above three categories
and obtain the summary statistics. For the remaining provinces that
do not have individually a sufficient number of client requests in

our dataset, we use the average value across the provinces with suf-
ficient data for each of the three server categories.

Using this extrapolation methodology, Table 4 shows the im-
provement of the QoE metrics relative to the case of SamePoP for
3 of the major provinces. Due to confidentiality considerations, we
cannot show the absolute QoE numbers and normalize the values
relative to the baseline of SamePoP; e.g., for SameISP the normal-
ized QoE will be NormQoE SameISP = QoESameISP

QoESamePoP
. Note that

for buffering ratio and join time, higher values of the normalized
metric indicate worse QoE and for average bitrate, lower values in-
dicate worse QoE. We observe that the QoE is strongly dependent
on the distance between the user and the provider. For instance, in
the “Others” row the buffering ratio increases by 17% if the server
is in a different PoP but within the same ISP; this value grows by
218% for the case of different ISPs.

6.2 Results
Given the above extrapolation methodology, we can compare

the QoE provided by a specific ICN strategy relative to the QoE
provided by the reference, no-cache strategy. That is, for each re-
quest q , we calculate two normalized QoE values based on the val-
ues shown in Table 4: NormQoE q,ICN and NormQoE q,NoCache .
Then, we calculate the difference between the per-request means of

these values:
∑V

q=1 NormQoEq,NoCache

V
−

∑V
q=1 NormQoEq,ICN

V
, where

V is the total number of video requests.4

Figure 9 shows this improvement metric (expressed as a percent-
age). In the interest of brevity, we only consider a few interesting
caching strategy combinations from the previous section. Specif-
ically, we consider three combinations: (1) LCE +LRU, which is
the most basic combination suggested in previous work; (2) Prob
+LFU, which emerged as the dominant strategy across all scenar-
ios from the previous section; and (3) The best caching strategy
for each of the different network-level metrics from the previous
section.

We make three main observations from this figure. First, the
overall magnitude of QoE improvement is quite low; the maximum
performance gap between the largest 1TB cache and a no-ICN sce-
nario is ≤ 12% across all QoE metrics. Second, with small caches
≤ 10GB, video QoE improvement is almost negligible. Finally, we
see that the more complex caching strategies are more beneficial

4For bitrate, the difference is reversed since a higher value is better.
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Figure 10: Breakdown of requests served by servers in three
different types of locations.

to QoE than simpler strategies. For example, the average relative
performance improvement by using the Prob +LFU strategy com-
pared to LCE +LRU strategy across all the metrics and cache sizes
is close to 4×.

Overall, we find that the traffic reduction appears to be the most
useful criterion to improve the QoE metrics. This is intuitively ex-
pected, as reducing traffic load improves requests locality. As we
saw earlier in Table 4, locality directly correlates with improved
QoE in our dataset. We also see that the dominant strategy from
the previous section (i.e., Prob +LFU) is again very competitive, as
it is close to the best result in all cases.

To further analyze why the overall improvement in the QoE
seems quite low, we provide a breakdown of the number of requests
served by the three key categories of (client relative) provider loca-
tions in Figure 10. As a point of reference, we also show the corre-
sponding breakdown for the case of no ICN deployment (denoted
by No Cache in the figure). For ease of visualization, we focus
only on two of the ICN strategies. The figure shows that the cur-
rent server deployment of PPTV is effectively localizing requests;
i.e., the fraction of SamePoP and SameISP requests is largely sim-
ilar at ≤ 100GB caches, and only at 1TB does Prob +LFU show a
visible difference.

6.3 Summary of key findings
After analyzing the effect of ICN caching strategies on video

QoE improvement, we find that:

• We see non-trivial QoE improvements only with caches ≥
100GB. Even then, the QoE improvement is quite low ≤ 12%
across all QoE metrics even with a 1TB cache.

• The caching strategy that optimizes the traffic reduction ap-
pears to be the best strategy to also optimize QoE; the domi-
nant strategy in terms of the caching metrics (i.e., Prob +LFU)
is again a close-to-optimal strategy with respect to QoE (as
shown in Figure 9).

• The QoE improvement seems to be low mainly because of
the good coverage of the PPTV servers across popular PoP-
s/ISPs. This suggests that for popular video services whose
server footprint is already spatially diverse, the QoE benefits
of ICN will be limited.

7. DISSECTING BENEFITS
In the previous two sections, we studied the aggregate im-

provement of different content replacement/placement algorithms
in terms of network-level and QoE metrics. In this section, we pro-
vide a more in-depth analysis to identify how and where these ben-
efits manifest, so that it can better inform the deployment decisions

of content providers and ISPs as they consider ICN-like architec-
tures. Specifically, we are interested in:

• Which network routers (e.g., edge vs. core) provide the largest
contribution to caching metrics and QoE improvements?

• What types of requests (e.g., low vs. high popularity) and client
locations (e.g., types of provinces) are more likely to perceive
the largest benefits?

• At what times of day do we see the most benefits?

In the interest of brevity, we only focus on Prob +LFU that we
found to be the dominant strategy across caching metrics and near-
optimal for QoE.

7.1 Routers contributing to improvement
We identify the (network-wide) top-100 routers with respect to

performance metrics (i.e., hitrate, contribution to traffic reduction,
and contribution to server load reduction). Then, we characterize
these top-100 routers along two dimensions: (1) The relative role
of a router in the network (i.e., Edge, Middle, or Core) and (2)
Geographical location of the router (i.e., which province). Because
we do not have such role annotations in our measured topology,
we use the following heuristic for (1). First, we classify a router’s
role for each request relative to the shortest path between the client
and the server. We divide the path into three equal-sized segments:
Edge, Middle, or Core, with Edge being the segment closest to
the client, Core being close to the server, and Middle being the
rest. Then, for each router, we compute its overall role by taking
a simple majority vote over all requests the router is involved. For
(2), we use a proprietary IP-to-location mapping database [2].
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Figure 11: Breakdown of top routers locations.
Figure 11 shows the breakdown of these routers in terms of their

network roles. We see that most of the top-100 routers with high
cache hit rate are Core routers. This is because the requests of
the same content aggregate when going towards the direction of
the origin server. However, Core routers contribute very little to
reducing the traffic and server load. This observation is consistent
with previous work on more general request workloads [23]. We
posit that the incentives for real world ICN deployment by ISPs and
content providers will likely stem from traffic and load reduction.
Thus, we suspect that ICN routers will not be prominent in the
network core.

We have also analyzed how these top-100 routers are geograph-
ically spread (not shown). We observed two main trends. First,
the top routers with respect to traffic and server load reductions are
mainly in provinces with a large client population (e.g., HE, SD,
GD). This is expected, as the routers in regions with larger popula-
tions serve more client requests and thus cumulatively reduce more
network footprint. Second, top routers with respect to hit rate im-
provement are located in provinces with many PPTV servers (e.g.,
JL, BJ, SC). This is consistent with Figure 11, as a province with
more servers naturally has more routers closer to servers. Similar to
our earlier observation in Section 6 that the video QoE metrics are
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Figure 12: Locations with best improvement in traffic reduc-
tion and buffering ratio improvement.

closely correlated with traffic reduction, here, we saw the routers
contributing to most QoE improvements are, to a great extent, the
same routers that contribute most to traffic reduction (not shown).

7.2 Request-level analysis
Locations with most improvement: We identify the regions with
the highest caching performance and QoE improvements using the
traffic reduction and buffering ratio as representative caching- and
QoE-related metrics. Recall that each request q is associated with
the province where the client is located. For each province, we cal-
culate the average traffic reduction and QoE improvement across
requests originating in that province. Then, we normalize these
values across different provinces with respect to the province with
the highest value such that the best value is 1. While this normal-
ization is because of PPTV’s confidentiality constraints, since our
goal is to study the relative behaviors across provinces, we believe
this is a reasonable choice.
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Figure 13: CDF of buffering ratio and traffic improvement as
functions of top provinces.

Figure 12 shows the normalized values for top 4 provinces. The
top provinces shown in Figure 12a and Figure 12b have substantial
overlap, with AH, JX and SH being in common. For QoE im-
provement, the top provinces tend to be those with few servers de-
ployed (e.g., JX, AH, GZ, SH) (see Figure 2). This is intuitively
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Figure 14: Improvement in video QoE and traffic reduction vs.
popularity of objects.

expected from the earlier observation in Figure 10: Provinces with
PPTV servers already localize traffic and cannot substantially im-
prove QoE further.

The previous result looks at the average per-request improve-
ment, but does not consider the volume of requests from a given
region. To account for this, we also analyzed how the top-
k provinces contribute to the total improvement across requests∑

q Improvementq for different Improvement metrics. Fig-
ure 13 shows the cumulative distribution of improvement of buffer-
ing ratio and traffic reduction as a function of top provinces. We
see that there is a skewed and diminishing returns behavior: the
top-20% provinces contribute about 60% of the total improvement.
As discussed earlier, these tend to be provinces with high request
volumes but low/no server presence. The above results suggest that
ISP deployment efforts may be better invested in such regions to
gain maximum return-on-investments.

Request popularity: In Figure 14, we analyze which type of re-
quests receive the highest QoE improvement and contribute most
to traffic reduction. To this end, we categorize videos into three
popularity bins: high (≥ 10,000 views per day), medium (5,000
to 10,000 views per day), and low (< 5,000 views per day). Then
we assign each request q to one of these three bins and, for each
bin, we compute the average values of traffic and buffering ratio
improvements. Then we normalize these values such that the high-
popularity bin using 1TB cache is assigned a value of 1. The result
is quite intuitive: popular contents by virtue of higher request rates
and cache hits see the highest QoE improvements and contribute
most of the traffic reduction. With increasing the cache size, we
observe that objects with medium and low popularity also benefit.

We have also analyzed the contribution of the top-k popular ob-
jects to the aggregate improvement of buffering ratio and traffic re-
duction. Here, we observed an even greater skew; the top 0.0014%
objects (≈700 videos) contribute 91% of the buffering ratio im-
provement and 92% of the traffic improvement (not shown).

7.3 Temporal analysis
Finally, we analyze at what time of day we observe most of the

perceived benefit. (Since there is only one time zone in China,
we do not need to be concerned about the effect of different time
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(b) Buffering

Figure 15: Time-of-day effects: We can visually confirm that
the times of high improvement roughly coincides with high re-
quest volume.

zones.) Figure 15 shows the breakdown of the QoE improvement
for the buffering ratio and traffic reduction per content-view trace
as functions of time on a single day. For brevity, we do not show
the other days or QoE metrics since the results are similar. We
observe that, on average, most QoE improvement and traffic reduc-
tion is achieved in the evening (8:00pm to 12:00am). We can see
that these periods are actually the busiest time (i.e., highest num-
ber of requests) for PPTV platform. This observation that caching
provides the most gain at the time interval with most video traffic
provides good incentives for access ISPs, as reducing peak utiliza-
tion can reduce costs with “burstable billing” schemes that charge
based on 95-th percentile usage.

8. DISCUSSION

Cache placement and provisioning: Our evaluation assumes
that all locations have the same amount of cache storage. A nat-
ural question is the impact of more fine-grained cache placement
and provisioning strategies on our findings. For example, previ-
ous work has shown that a network-wide cache deployment may
not yield substantial benefits [23]. While an exploration of optimal
cache placement is outside the scope of this paper, we present some
initial results.

We make a performance comparison between two extreme cache
provisioning strategies: (1) Ubiquitous caching, where every router
in the network is equipped with a cache of the same size, and (2)
Access-Only caching, where only access routers (i.e., one hop away
from the client) are equipped with caches. To make a fair compar-
ison between these two strategies, we assume that the total volume
of network-wide cache storage is the same.

Our experiments show that the relative gain of ubiquitous
caching over access-only caching depends on the cache size. For
a very small cache size of 1GB, the gain is as large as 2× for dif-
ferent performance metrics. As the cache size increases, however,
the performance gain diminishes. This is consistent with previous
results reported in [23].

Origin server placement: As we saw earlier in Section 6, the
improvements of video QoE as yielded by ICN caching are quite
marginal, at least partially, because of the sufficient geodiversity of

PPTV servers. A natural question, therefore, is the sensitivity of
our results to the number and placement of origin servers.

To find the answer, we evaluate the sensitivity of our results to
the number of origin PPTV servers. The results are shown in Fig-
ure 16. In each plot, the X axis represents the total number of
origin servers and the Y axis is the gain yielded by ICN caching for
the corresponding QoE metric. We show the normalized values on
the Y axes to make it easier to compare the results across different
cache sizes and metrics. The locations of each given total number
of servers are chosen at random from all the 221 PPTV servers.

We observe that as the number of origin servers grows, the effect
of ICN caching on improving QoE metrics diminishes because of
increasing geodiversity of the content servers. We believe that our
results in Figure 9 are representative—Popular content providers
today (e.g., YouTube, Netflix) that carry the most amount of traffic,
typically, already have a significant geographic footprint [16], if not
directly, at least via CDNs.

Request routing: One question is whether intelligent request rout-
ing strategies can help; e.g., would some of the less optimal caching
strategies we saw perform better under different routing regimes?
Extrapolating from prior work, we posit that complex request rout-
ing will offer minimal benefits over simple routing [23,46] and will
likely not impact our observations.

Other forms of video: We have studied the interaction between
VOD workloads and ICN because it is the dominant form of Inter-
net video used today. An interesting direction of future work is to
replicate our analysis on other types of video workloads (e.g., live
streams).

9. CONCLUSIONS
Even though video and ICN have been considered natural allies,

there has been little work on analyzing how video workloads im-
pact the network-level benefits of ICN and how ICN helps improve
video QoE metrics. Our work addresses this crucial gap. To the
best of our knowledge, our study is the most comprehensive and
the largest-scale analysis of ICN-on-video in terms of trace size,
topology scale, and the space of ICN caching strategies explored.

Our findings have key implications for providers and future In-
ternet architectures: (1) the benefits of ICN for video workloads
with caches smaller than 100GB are marginal; (2) the combined
content placement and content replacement strategy of Prob +LFU
is close to the optimal with respect to improvements in both ICN
caching performance and QoE metrics across the entire spectrum of
analysis parameters; and (3) a small number of regions without ori-
gin servers and with requests for highly popular objects contribute
to the most of the improvements. That said, this is by no means the
final word in this space, and there are several directions for future
work including analyzing other forms of video (e.g., live stream
and short VOD), providing a more analytical basis for our empiri-
cal observations, and exploring the effects of different ICN routing
schemes.
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Figure 16: Improvement of QoE by ICN as a function of number of origin servers.
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