
A Control-Theoretic Approach for
Dynamic Adaptive Video Streaming over HTTP

Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, Bruno Sinopoli
Carnegie Mellon University

{yinxiaoqi522, abhishekjindal93}@gmail.com, {vsekar,brunos}@andrew.cmu.edu

ABSTRACT
User-perceived quality-of-experience (QoE) is critical in In-
ternet video applications as it impacts revenues for content
providers and delivery systems. Given that there is little sup-
port in the network for optimizing such measures, bottle-
necks could occur anywhere in the delivery system. Conse-
quently, a robust bitrate adaptation algorithm in client-side
players is critical to ensure good user experience. Previ-
ous studies have shown key limitations of state-of-art com-
mercial solutions and proposed a range of heuristic fixes.
Despite the emergence of several proposals, there is still a
distinct lack of consensus on: (1) How best to design this
client-side bitrate adaptation logic (e.g., use rate estimates
vs. buffer occupancy); (2) How well specific classes of ap-
proaches will perform under diverse operating regimes (e.g.,
high throughput variability); or (3) How do they actually
balance different QoE objectives (e.g., startup delay vs. re-
buffering). To this end, this paper makes three key technical
contributions. First, to bring some rigor to this space, we
develop a principled control-theoretic model to reason about
a broad spectrum of strategies. Second, we propose a novel
model predictive control algorithm that can optimally com-
bine throughput and buffer occupancy information to outper-
form traditional approaches. Third, we present a practical
implementation in a reference video player to validate our
approach using realistic trace-driven emulations.

CCS Concepts
•Information systems→Multimedia streaming; •Networks
→Network protocol design; Application layer protocols;

Keywords
Internet Video; Bitrate Adaptation; DASH; Model Predictive
Control

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’15, August 17 - 21, 2015, London, United Kingdom
c© 2015 ACM. ISBN 978-1-4503-3542-3/15/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2785956.2787486

1 Introduction
Many recent studies have highlighted the critical role that
user-perceived quality-of-experience (QoE) plays in Internet
video applications, as it ultimately affects revenue streams
for content providers [24, 35]. Specifically, metrics such as
the duration of rebuffering (i.e., the player’s playout buffer
does not have content to render), startup delay (i.e., the lag
between the user clicking vs. the time to begin rendering),
the average playback bitrate, and the variability of the bitrate
delivered have emerged as key factors.

Given the complex Internet video delivery ecosystem and
presence of diverse bottlenecks, the bitrate adaptation logic
in the client-side video player becomes critical to optimize
user experience [16]. In the HTTP-based delivery model that
predominates today [44], videos are typically chunked and
encoded at different bitrate levels. The goal of an adaptive
video player is to choose the bitrate level for future chunks
to deliver the highest possible QoE; e.g., maximizing bitrate
while minimizing the likelihood of rebuffering and avoiding
too many bitrate switches.

Many recent efforts have pointed out key challenges in de-
signing this adaptation logic (e.g., [46, 17, 32, 34]) and sev-
eral proposals have emerged to try and address these chal-
lenges (e.g., [34, 17, 33]). Despite the proliferation of nu-
merous algorithms, however, there appears to be a lack of
clarity and consensus across these solutions on several fronts;
e.g., some argue for better throughput estimation [47], while
others suggest improving chunk scheduling [34]. Some re-
searchers even argue against rate-based approaches that rely
on throughput estimates from previous chunk downloads and
make the case for buffer-occupancy based algorithms that
make their decisions purely based on buffer occupancy [33].

In order to understand the fundamental tradeoffs between
different classes of algorithms (e.g., rate- vs buffer-based)
under different operating regimes (e.g., low vs. high through-
put variability), we begin by formulating the video bitrate
adapdation as a stochastic optimal control problem. We for-
mally define the key dynamic variables involved in the video
adaptation problem and a concrete objective. This frame-
work allows us to outline the broader design space of control
algorithms for this problem. We identify a key shortcoming
in existing approaches that rely exclusively on pure rate- or
buffer-based strategies, and that might be potentially missing
out on strategies that combine both signals.

Building on insights from the control-theoretic formula-
tion, we argue that model predictive control (MPC) [22] is

325



a suitable class of algorithms that can optimally combine
both rate-based and buffer-based feedback signals. At a high
level, MPC attempts to predict key environment variables
over a moving look-ahead horizon and solve an exact opti-
mization problem based on the prediction. MPC is the tech-
nology of choice in a multitude of real world control prob-
lems [22]. In addition to its intuitive formulation, it can ex-
plicitly handle complex control objectives and constraints,
and has a set of well understood tuning parameters such as
the prediction horizon. Moreover, MPC has other qualitative
advantages as its development time is much shorter com-
pared to advanced control methods and it is easier to main-
tain, as changing model parameters does not require com-
plete redesign.

In our context, the MPC approach entails predicting the
expected throughput for the next few chunks and using this
to make optimal bitrate decisions for QoE maximization. In-
deed, our simulation results confirm that if we could run an
optimal MPC algorithm and the prediction error was low,
then the MPC scheme can outperform traditional rate-based
and buffer-based strategies.

In practice, however, running a MPC-based algorithm is
challenging because it needs to solve a non-trivial discrete
optimization problem at each time step. Even ignoring the
computational overhead, there are practical difficulties as
we might need to bundle this solver logic with every video
player or require users to download and install additional
software. To address these challenges, we develop a simple-
yet-efficient FastMPC mechanism. Conceptually, FastMPC
essentially follows a table enumeration approach, where we
describe the problem state-space, solve the specific instances
optimally offline, and store the optimal control decisions for
future online use. If implemented naively, however, the size
of this table can induce significant memory overhead and
startup delays for video players (e.g., additional JavaScript
to load). Fortunately, we show that with a simple value bin-
ning and compression strategy, we can achieve near-optimal
performance with manageable table sizes.

We have prototyped our FastMPC bitrate adaptation algo-
rithm in an open source dynamic adaptive streaming player
called dash.js [1]. Our choice of platform is a prag-
matic one—it is the reference open-source implementation
for the MPEG-DASH standard based on the HTML5 speci-
fication and is actively supported by leading industry partic-
ipants [7]. We show that our implementation adds negligible
overhead to the baseline dash.js player. We also show-
case the FastMPC-based player in our demo page [14].

We evaluate our algorithms and prototype implementa-
tion using realistic emulation experiments on measured [9,
10] and synthetic throughput variability traces. We also aug-
ment these results with simulation-based sensitivity analysis
experiments to analyze the effect of key operating parame-
ters on the performance of different classes of algorithms.
Our key findings are:

1. Our proposed MPC approach consistently outperforms
the state-of-art adaptation algorithms by 15% in broad-
band (FCC) dataset and 10% in cellular (HSDPA) dataset

in terms of median QoE. It also achieves significant im-
provement (60+% median QoE) compared to the indus-
try reference player dash.js;

2. Our fast and low-overhead implementation FastMPC re-
quires similar CPU usage and only 60 kB extra memory
usage comparing to other algorithms.

Contributions and roadmap: In summary, this paper makes
the following key contributions:1

• Development of a formal control-theoretic model of the
bitrate adaptation problem (Section 3);
• Design of a MPC approach that subsumes existing rate-

and buffer-based strategies (Section 4);
• A practical and fast table enumeration based algorithm

FastMPC that near-optimally approximates the perfor-
mance of an exact MPC approach (Section 5);
• A low-overhead implementation based on the open source

reference video player dash.js (Section 6);
• A systematic evaluation of different classes of algorithms

over a wide range of operating parameters and realistic
traces (Section 7)

We begin by discussing background on DASH and related
work in the next section.

2 Background and Related Work
We begin with a high-level overview of how HTTP-based
adaptive video streaming works, before describing the key
shortcomings of today’s state-of-art solutions.

Internet video technologies such as Microsoft Smooth-
Streaming [13], Apple’s HLS [5], and Adobe’s HDS [2] rely
on HTTP-based adaptive streaming. This class of protocols
is being standardized under the umbrella of Dynamic Adap-
tive Streaming over HTTP or DASH [16]. In DASH systems,
each video consists of multiple segments or “chunks” (cor-
responding to a few seconds of play time) and each chunk is
encoded at multiple discrete bitrates. The chunks from dif-
ferent bitrate streams are aligned so that the video player can
switch to a different bitrate if necessary at a chunk boundary.
This approach has several pragmatic advantages over cus-
tom streaming protocols such as Real-Time Messaging Pro-
tocol (RTMP). The use of HTTP enables providers to seam-
lessly bypass middleboxes. Furthermore, it can use existing
commodity CDN servers without requiring custom modifi-
cations. Finally, by making the server stateless, one can
implement better application-layer resilience using multiple
servers and CDNs [41, 40].

Figure 1 shows an abstract model of the adaptive video
player. The player uses some inputs (e.g., buffer occupancy
or estimates of the network throughput) in its decision logic
to choose the bitrate level for the next chunk(s) to be down-
loaded. In making this decision, there are many potentially
conflicting QoE considerations a player must account for:
(1) minimizing rebuffering events where the playback buffer
1An early workshop version of the paper made the case for
a MPC-based approach [50]. However, it did not provide a
concrete algorithm, a practical implementation, and evalua-
tion using real throughput traces.

326



QoE

InternetInternet

Throughput 

Predictor

Throughput 

Predictor

Bitrate 

Controller

Bitrate 

Controller
HTTPHTTP

GET

Chunk

Buffer 

Occupancy

Video Player

BufferBufferBuffer

End User

Bitrate

Throughput

Prediction

Figure 1: Abstract model of DASH players

is empty and cannot render the video; (2) delivering as high
a playback bitrate as possible within the throughput con-
straints; (3) minimizing startup delay so that the user does
not quit while waiting for the video to load; and (4) keeping
the playback as smooth as possible by avoiding frequent or
large bitrate jumps [24, 35].

To see why these objectives are conflicting, let us con-
sider two extreme solutions. A trivial solution to minimize
rebuffering and the startup delay would be to always pick
the lowest bitrate, but it conflicts with the goal of deliver-
ing high bitrate. Conversely, picking the highest available
bitrate may lead to many rebuffering events. Similarly, the
goal of maintaining a smooth playback may also conflict if
the optimal choice to simultaneously minimize rebuffering
and maximizing average bitrate is to switch bitrates for ev-
ery chunk.

The focus of this paper is on client-side adaptation solu-
tions. Other complementary work includes the use of server-
side bitrate switching (e.g., [37, 18]), TCP changes to avoid
bursts (e.g., [27]), and in-network throughput management
and caching (e.g., [31, 45, 42]). We focus on the client-side
problem for two key reasons. First, client-side solutions of-
fer the most immediately deployable alternative in contrast
to solutions that require in-network support (e.g., [31, 45,
42]), server-side software changes (e.g., [37, 18]), or modi-
fications to lower-layer transport protocols (e.g., [27, 28, 39,
29, 36]). Second, the client is often in the best position to
quickly detect performance issues and respond to dynam-
ics. That said, we believe that the formal foundations and
algorithms we develop can be equally applied to these other
deployment scenarios.

Many measurement studies have shown the poor perfor-
mance of state-of-art video players with respect to these QoE
measures (e.g., [46, 34, 32]). These studies show that most
problems are not artifacts of specific players but manifest
across all state-of-art players such as SmoothStreaming [13],
Netflix [11], Adobe OSMF [3], and Akamai HD [4]. For
brevity we do not reproduce these results here but refer in-
terested readers to prior work (e.g., [46, 34, 32]).

To alleviate these problems, there have been several recent
proposals in the research literature (e.g., [47, 34, 18, 33, 38]).
At a high level, these solutions can be roughly divided into
two categories: (1) rate-based algorithms and (2) buffer-
based algorithms. Video players with rate-based methods
essentially pick the highest possible bitrate based on the es-

timated available throughput. However, as shown in prior
work throughput estimation on top of HTTP suffers from
significant biases [32], which leads to problems with tradi-
tional rate-based approaches. Some solutions try to work
around these biases by either smoothing out throughput esti-
mates [47] or choosing better scheduling strategies [34]. On
the other hand, recent work makes a case for buffer-based al-
gorithms [33]. Rather than using throughput estimates, this
class of algorithms uses buffer occupancy as the feedback
signal, and designs mechanisms to keep the buffer occu-
pancy at a desired level, essentially discarding any available
throughput information.

Despite the broad interest in this topic, what is critically
lacking today is a principled understanding of bitrate adapta-
tion algorithms. Each aforementioned solution offers point
heuristics that work under specific (and implicit) environ-
mental assumptions. While each approach seen in isolation
has been shown to outperform commercial players, there is
little effort to systematically compare how different classes
of algorithms stack up against each other or which of these
technical components are critical, or how robust these algo-
rithms are across different operating regimes (e.g., through-
put stability, buffer size, number of bitrate levels). Further-
more, many of these algorithms even fail to formally state
what objective they seek to optimize making it harder to con-
duct a meaningful comparison.

Our first-order goal in this work is to bring some clarity
to this space. Rather than design yet another point solution,
we start by developing a first-principles approach via con-
trol theory to develop a general framework to reason about
classes of algorithms. In the next section, we use this control-
theoretic “lens” to formally define the stochastic optimiza-
tion that video bitrate adaptation algorithms try to solve.

3 Control-Theoretic Model
In this section, we develop a mathematical model of the
HTTP video streaming process and formally define the bi-
trate adaptation problem. This model gives us a framework
to compare and evaluate existing algorithms and serves as
the foundation for potential improvements.

3.1 Video Streaming Model
We model a video as a set of consecutive video segments or
chunks, V = {1, 2, · · · ,K}, each of which contains L sec-
onds of video. Each chunk is encoded at different bitrates.
Let R be the set of all available bitrate levels. The video
player can choose to download chunk k at bitrate Rk ∈ R.
Let dk(Rk) be the size of chunk k encoded at bitrate Rk. In
constant bitrate (CBR) case, dk(Rk) = L × Rk, while in
variable bitrate (VBR) case the dk ∼ Rk relationship can
differ across chunks.

The higher bitrate is selected, the higher video quality
is perceived by the user. Let q(·) : R → R+ be a non-
decreasing function which maps selected bitrate Rk to video
quality perceived by user q(Rk). Note that q(·) may depend
on the video-playing device as well as the content of the
video. For example, while on HDTV 3Mbps and 1Mbps
may lead to significant difference in user experience, the

327



TimeB
u

ff
e

r 
O

c
c
u

p
a

n
c
y

𝐵𝑘

𝐵𝑘+1

𝑡𝑘+1𝑡𝑘
Start chunk k

Rebuffer

Start chunk k+1

Download & Wait

𝑑𝑘(𝑅𝑘)

𝐶𝑘
+ Δ𝑡𝑘

0

Figure 2: Illustration of buffer dynamics

video quality in 3Mbps and 1Mbps may be similar on a mo-
bile device; Also, improving the bitrate of “dynamic” chunks
will result in more QoE gain than improving “static” chunks.

The video segments are downloaded into a playback buffer,
which contains downloaded but as yet unviewed video. Let
B(t) ∈ [0, Bmax] be the buffer occupancy at time t, i.e.,
the play time of the video left in the buffer. The buffer size
Bmax depends on the policy of the service provider, as well
as storage limitations on the player. A typical player buffer
may hold few tens of seconds of video segments.

Figure 2 helps illustrate the conceptual operation of the
video player. At time tk, the video player starts to down-
load chunk k. The download time for this chunk will be
dk(Rk)/Ck; i.e., it depends on the size of selected chunk
with bitrate Rk, as well as average download speed Ck ex-
perienced during this download process. Once chunk k is
completely downloaded, the video player waits for ∆tk and
starts to download the next chunk k+ 1 at time tk+1. We as-
sume that the waiting time ∆tk is small and will not lead to
rebuffering events. If we denote by Ct the network through-
put at time t, then we have:

tk+1 = tk +
dk(Rk)

Ck
+ ∆tk (1)

Ck =
1

tk+1 − tk −∆tk

∫ tk+1−∆tk

tk

Ct dt. (2)

The buffer occupancy B(t) evolves as the chunks are be-
ing downloaded and the video is being played. Specifically,
the buffer occupancy increases by L seconds after chunk k
is downloaded and decreases as the user watches the video.2

Let Bk = B(tk) denote the buffer occupancy when the
player starts to download chunk k. The buffer dynamics can
then be formulated as:

Bk+1 =

((
Bk −

dk(Rk)

Ck

)
+

+ L−∆tk

)
+

(3)

Here, the notation (x)+ = max{x, 0} ensures that the term
can never be negative. Note that if Bk < dk(Rk)/Ck, the
buffer becomes empty while the video player is still down-
loading chunk k, leading to rebuffer events as shown in Fig-
ure 2.
2The “startup” phase will be slightly different as the player
waits for some amount of buffer to build up before draining
the buffer.

The determination of waiting time ∆tk, also referred as
chunk scheduling problem, is an equally interesting and im-
portant problem in improving fairness of multi-player video
streaming [34]. However, in this paper we assume that the
player immediately starts to download chunk k + 1 as soon
as chunk k is downloaded. The one exception is when the
buffer is full, the player waits for the buffer to reduce to a
level which allows chunk k to be appended. Formally,

∆tk =

((
Bk −

dk(Rk)

Ck

)
+

+ L−Bmax

)
+

(4)

3.2 QoE Maximization Problem
The ultimate goal of bitrate adaptation is to improve the QoE
of users in order to achieve higher long-term user engage-
ment [24]. Our goal is to provide a flexible QoE model rather
than a fixed notion of QoE as this is an active area of research
[19]. While users may differ in their specific QoE functions,
we can enumerate the key elements of video QoE as:
1. Average Video Quality: The average per-chunk quality

over all chunks: 1
K

∑K
k=1 q(Rk);

2. Average Quality Variations: This tracks the magnitude
of the changes in the quality from one chunk to another:

1
K−1

∑K−1
k=1 |q(Rk+1)− q(Rk)|;

3. Rebuffer: For each chunk k rebuffering occurs if the down-
load time dk(Rk)/Ck is higher than the playout buffer
level when the chunk download started (i.e., Bk). Thus
the total rebuffer time 3 is

∑K
k=1

(
dk(Rk)

Ck
−Bk

)
+

.

4. Startup Delay Ts, assuming Ts � Bmax.
As users may have different preferences on which of the

four components is more important, we define the QoE of
video segment 1 through K by a weighted sum of the afore-
mentioned components:

QoEK
1 =

K∑
k=1

q(Rk)− λ
K−1∑
k=1

|q(Rk+1)− q(Rk)|

− µ
K∑

k=1

(
dk(Rk)

Ck
−Bk

)
+

− µsTs (5)

Here λ, µ, µs are non-negative weighting parameters cor-
responding to video quality variations, rebuffering time and
startup delay, respectively. A relatively small λ indicates
that the user is not particularly concerned about video quality
variability; the large λ is, the more effort is made to achieve
smoother changes of video quality. A large µ, relatively to
the other parameters, indicates that a user is deeply con-
cerned about rebuffering. In cases where users prefer low
startup delay, we employ a large µs.

In summary, this definition of QoE is quite general as it al-
lows us to model varying user preferences on different con-
tributing factors.

3Alternatively, one can also consider the number of rebuffer-
ing events formulated as

∑K
k=1 1

(
dk(Rk)

Ck
> Bk

)
.

328



max
R1,··· ,RK ,Ts

QoEK
1 (6)

s.t. tk+1 = tk +
dk(Rk)

Ck
+ ∆tk, (7)

Ck =
1

tk+1 − tk −∆tk

∫ tk+1−∆tk

tk

Ct dt, (8)

Bk+1 =

((
Bk −

dk(Rk)

Ck

)
+

+ L−∆tk

)
+

, (9)

B1 = Ts, Bk ∈ [0, Bmax] (10)
Rk ∈ R, ∀k = 1, · · · ,K. (11)

Figure 3: Formulation for QoE maximization
(QOE_MAXK

1 ) subject to buffer and throughput
dynamics.

QoE maximization problem: We are now ready to formu-
late the problem of bitrate adaptation for QoE maximization
as in Figure 3, denoted as QOE_MAXK

1 . Given through-
put trace {Ct, t ∈ [t1, tK+1]} as input, the optimization pro-
vides the following as output: 1) bitrate decisions R1,· · · ,
RK , and 2) startup time Ts.

Note that the problem QOE_MAXK
1 is formulated as-

suming the video playback has not started at the time of this
optimization so the start-up delay Ts is a decision variable.
However, this QoE maximization can also take place during
video playback at time tk0 when the next chunk to download
is k0 and the current buffer occupancy is Bk0 . In this case,
we can drop the variable Ts and denote the corresponding
steady state problem as QOE_MAX _STEADYK

k0
.

3.3 Classes of Algorithms
In this section we characterize problem QOE_MAXK

1 and
describe existing bitrate adaptation algorithms within this
framework to understand how they relate to one another.

The problem in Figure 3 is a finite-horizon stochastic op-
timal control problem. The source of randomness is in the
available throughput Ct. At time tk when the player chooses
bitrate Rk, only the past throughput {Ct, t ≤ tk} is avail-
able, while the future values {Ct, t > tk} are not known.

However, a throughput predictor can be used to obtain
predictions defined as {Ĉt, t > tk}. Based on such predic-
tion and on buffer occupancy information (which is instead
known precisely), the bitrate controller selects bitrate of the
next chunk k:

Rk = f
(
Bk, {Ĉt, t > tk}, {Ri, i < k}

)
. (12)

The design of effective throughput predictors is an inter-
esting research direction in its own right. In this paper, we
focus on bitrate adaptation algorithms only and assume that
predictors are given to us and are characterized in terms of
their expected prediction errors. Namely, we focus on the
design of f(·) and on the effect of the prediction error on
the performance of the compared control algorithms. In the
following sections, we will systematically evaluate how dif-

Buffer-based

Rate-based

Bitrate

Throughput 

prediction

Buffer 

occupancy

A1

A2
A3?

Design space of 

all algorithms

Figure 4: Design space of algorithms for the video adap-
tation problem: Most current approaches choose the bi-
trate as a function of only one variable; e.g., A1 is rate-
based (RB) while A2 is buffer-based (BB).

ferent algorithms perform with a state-of-art predictor under
a variety of variability conditions.

Now, different adaptation algorithms essentially adopt dif-
ferent functions f(·). Specifically, two main categories of al-
gorithms appear in the literature: rate-based (RB) and buffer-
based (BB) algorithms. RB strategies essentially choose bi-
trate only based on throughput prediction, i.e.,

Rk = f
(
{Ĉt, t > tk}, {Ri, i < k}

)
. (13)

For example, a typical RB strategy is to choose the maxi-
mum possible bitrate below the predicted throughput.

On the other hand, BB strategies advocate decision mak-
ing based only on buffer occupancy, namely:

Rk = f (Bk, {Ri, i < k}) , (14)

while regarding throughput variations as unmodeled distur-
bances. For example, Huang et al., illustrate one roadmap
for designing BB algorithms [33].

Note, however, that both classes of algorithms are dis-
carding possibly useful information as shown in Figure 4.
Consequently, both are in principle suboptimal. Ideally, we
want to use both buffer occupancy and throughput predic-
tion, thereby considering a broader design space of bitrate
adaptation strategies, as shown in Eq (12) and algorithm A3
depicted in Figure 4.

4 Model Predictive Control Approach
for Optimal Bitrate Adaptation

In this section, we make a case for a Model Predictive Con-
trol (MPC) approach for bitrate adaptation and describe a
concrete MPC-based workflow that can optimally combine
throughput prediction and buffer occupancy. We also de-
velop a robust MPC approach that can better handle errors
in throughput prediction under highly variable network con-
ditions.

4.1 Why MPC?
First, we provide the intuition behind the choice of MPC in
our setting. Note that we cannot claim that MPC is necessary
or the optimal choice in the space of all possible control al-
gorithms. Our goal is merely to argue that MPC is a natural
fit for the bitrate adaptation problem.

329



Strawman solutions: As we saw before, bitrate adaptation
is essentially a stochastic optimal control problem. In this
respect, there are two candidate well-known control algo-
rithms: (1) Proportional-integral-derivative (PID) control [25]
and (2) Markov Decision Process (MDP) based control [21].
While PID is computationally simpler compared to MPC,
it can only serve to stabilize the system and cannot explic-
itly optimize our QoE objective. In addition, PID control is
designed to work in continuous time and state space and us-
ing it in a highly discrete system such as ours may result in
performance degradation or instability [25]. Alternatively,
with MDP we could consider formulating the throughput
and buffer state transition as Markov processes, and find
the optimal control policy using standard algorithms such as
value iteration or policy iteration [21]. However, this has a
strong assumption that throughput dynamics follow Markov
processes and it is unclear if this holds in practice. We re-
gard the potential use of MDP and analysis of the throughput
dynamics as future work (see Section 8).

Case for MPC: Ideally, given perfect knowledge of future
throughput over the entire horizon of a video [t1, tK+1], the
optimal bitrate R1, · · · , RK and startup delay Ts can be cal-
culated in one shot by solving the optimization problem for
the entire video QOE_MAXK

1 . In practice, such perfect
information is not available, making it difficult to find such
optimal solutions using offline optimization.

While perfect information may not be available for the en-
tire future, it is possible that reasonably accurate throughput
prediction can be instead obtained for a short horizon to the
future [tk, tk+N ]. The intuition here is that network condi-
tions are reasonably stable on short timescales and usually
do not change drastically during a short horizon (tens of sec-
onds) [51]. Based on this insight, we can run a QoE opti-
mization using the prediction in this horizon, apply the first
bitrateRk, and move the horizon forward to [tk+1, tk+N+1].
This scheme is known as model predictive control (MPC) or
receding horizon control [22]. MPC algorithms are widely
used in different domains, ranging from industrial control to
navigation. The general benefits of MPC are in that MPC
can utilize predictions to optimize a complex control objec-
tive online in a dynamical system under constraints.

4.2 Basic MPC Algorithm
Algorithm 1 shows a high-level overview of the workflow of
MPC for bitrate adaptation. In our context, the algorithm
essentially chooses bitrate Rk by looking N steps ahead
(i.e., the moving horizon), and solves a specific QoE max-
imization problem (this depends on whether the player is in
steady or startup phase) with throughput predictions {Ĉt, t ∈
[tk, tk+N ]}, or Ĉ[tk,tk+N ]. The first bitrate Rk is applied by
using feedback information and the optimization process is
iterated at each step k.

At iteration k, the player maintains a moving horizon from
chunk k to k+N −1 and carries out the following three key
steps, as shown in Algorithm 1.

1. Predict: Predict throughput Ĉ[tk,tk+N ] for the next N
chunks using some throughput predictor. Our goal in this

Algorithm 1 Video adaptation workflow using MPC

1: Initialize
2: for k = 1 to K do
3: if player is in startup phase then
4: Ĉ[tk,tk+N ]= ThroughputPred(C[t1,tk])

5: [Rk, Ts] = fstmpc

(
Rk−1, Bk, Ĉ[tk,tk+N ]

)
6: Start playback after Ts seconds
7: else if playback has started then
8: Ĉ[tk,tk+N ]= ThroughputPred(C[t1,tk])

9: Rk = fmpc

(
Rk−1, Bk, Ĉ[tk,tk+N ]

)
10: end if
11: Download chunk k with bitrate Rk, wait till fin-

ished
12: end for

paper is not to design a prediction mechanism but to rely
on existing approaches. Naturally, improving the accu-
racy of this prediction will improve the gains achieved
via MPC. That said, MPC can be extended to be robust
to errors as we discuss below.

2. Optimize: This is the core of the MPC algorithm: Given
the current buffer occupancy Bk, previous bitrate Rk−1

and throughput prediction Ĉ[tk,tk+N ], find optimal bitrate

Rk. In steady state,Rk = fmpc

(
Rk−1, Bk, Ĉ[tk,tk+N ]

)
,

implemented by solving QOE_MAX _STEADY k+N−1
k .

In the start-up phase, it also optimizes start-up time Ts as
[Rk, Ts] = fstmpc

(
Rk−1, Bk, Ĉ[tk,tk+N ]

)
, implemented

by solving QOE_MAX k+N−1
k . If we ignore practical

details about computational overhead, we can simply use
off-the-shelf solvers such as CPLEX to solve these dis-
crete optimization problems. As we will see in Section 5,
we do not need to explicitly solve the optimization prob-
lem within the video player in practice.

3. Apply: Start to download chunk k with Rk and move the
horizon forward. If the player is in start-up phase, wait
for Ts before starting playback.

This workflow has several qualitative advantages compared
with buffer-based (BB), rate-based (RB) as we discuss be-
low. First, this MPC algorithm uses both throughput pre-
diction and buffer information in a principled way. Second,
compared to pure RB approaches, MPC smooths out predic-
tion error at each step and is more robust to prediction er-
rors. Specifically, by optimizing several chunks over a mov-
ing horizon, large prediction errors for one particular chunk
will have lower impact on the performance. Third, MPC
directly optimizes a formally defined QoE objective, while
in RB and BB the tradeoff between different QoE factors is
not clearly defined and therefore can only be addressed in an
ad hoc qualitative manner.

4.3 Robust MPC
The basic MPC algorithm assumes the existence of an ac-
curate throughput predictor. However, in certain severe net-

330



work conditions, e.g., in cellular networks or in prime time
when the Internet is congested, such accurate predictors may
not be available. For example, if the predictor consistently
overestimates the throughput, it may induce high rebuffer-
ing. To counteract the prediction error, we develop a robust
MPC algorithm.

Robust MPC essentially optimizes the worst-case QoE as-
suming that the actual throughput can take any value in a
range [Ĉt, Ĉt] in contrast to a point estimate Ĉt. Robust
MPC entails solving the following optimization problem at
time tk to get bitrate Rk = frobustmpc(Rk−1, Bk, [Ĉt, Ĉt]):

max
Rk,··· ,Rk+N−1

min
Ct∈[Ĉt,Ĉt]

QoEk+N−1
k (15)

s.t. Constraints (7) to (11) (16)

In general, it may be non-trivial to solve such a max-min
robust optimization problem. In our specific case, however,
we can prove that the worst case scenario takes place when
the throughput is at its lower bound Ct = Ĉt. Thus, the
implementation of robust MPC is straightforward. Instead of
Ĉt, we use the lowest possible Ĉt as the input to the regular
MPC QoE maximization problem. Formally,

THEOREM 1. The robust MPC controller is equivalent to
the regular MPC taking the lower bound of throughput as
input, namely,

Rk = frobustmpc(Rk−1, Bk, [Ĉt, Ĉt])

= fmpc(Rk−1, Bk, Ĉt)

PROOF SKETCH. Conceptually, QoE functionQoE(R,C)
can be written as the sum of 3 terms (g1: total video quality,
g2: total quality change, g3: rebuffer time), in which only
the rebuffer time term depends on throughput C. Thus,

max
R

min
C∈[C,C]

QoE(R,C)

≡max
R

(
g1(R)− λ× g2(R)− max

C∈[C,C]
µ× g3(R,C)

)
≡max

R
QoE(R,C)

As any decrease of throughput C will lead to longer re-
buffer time, the minimum QoE is achieved at C = C.

The one potential downside is that robust MPC is more
conservative than regular MPC by always assuming the low-
est throughput. The degree of conservativeness here natu-
rally depends on how loose/tight the lower bound is. In
practice, we use maximum prediction error over the past sev-
eral chunks as bounds in our implementation and find that it
works well in practice (discussed in Section 7).

5 Using MPC in Practice — FastMPC
While rate-based and buffer-based algorithms need relatively
minor computations, the challenge with MPC is that we need
to solve a discrete optimization problem at each time step.
There are two practical concerns here:

CPLEX

Offline Enumeration

CPLEX CPLEX

…

Scenario BufferLevel PrevBitrate Throughput Optimal Bitrate

1 1s 350kbps 350kbps 350kbps

2 2s 350kbps 600kbps 600kbps

… … … … …

50,000 20s 3000kbps 3000kbps 3000kbps

Query Lookup

BufferLevel 1s

PrevBitrate 350kbps

Throughput 350kbps

BufferLevel 2s

PrevBitrate 350kbps

Throughput 600kbps

BufferLevel 20s

PrevBitrate 3000kbps

Throughput 3000kbps

…

Online Bitrate Adaptation

Figure 5: “FastMPC” idea: We enumerate possible sce-
narios and create a table indexing the optimal decision
for each scenario.

• Computational overhead: First, the high computational
overhead of MPC is especially problematic for low-end
mobile devices, which are projected to be the dominant
video consumers going forward. Since the bitrate adap-
tation decision logic is called before the player starts to
download each chunk, excessive delay in the bitrate adap-
tation logic will negatively affect the QoE of the player.
• Deployment: Since we do not have a closed-form or com-

binatorial solution for the QoE maximization problem,
we will need to use a solver (e.g., CPLEX or Gurobi).
However, it may not be possible for video players to be
bundled with such solver capabilities; e.g., licensing is-
sues may preclude distributing such software or it may
require additional plugin or software installations which
poses significant barriers to adoption [26].

From the above discussion, it is evident that the solution
we develop should be lightweight and combinatorial (i.e.,
not solving a LP or ILP online). As such, in this section, we
address these two key practical issues by developing a fast
and low-overhead FastMPC design that does not require any
explicit solver capabilities in the video player [48].

5.1 High-Level Idea of FastMPC
At a high level, FastMPC algorithms essentially follow a
table enumeration approach. Here, we do an offline step
of enumerating the state-space and solve each specific in-
stance. Then, in the online step we just use these stored op-
timal control decisions mapped to the current operation con-
ditions. That is, the algorithm will be reduced to a simple
table lookup indexed by the key value closest to the current
state and the output of the lookup is the optimal solution for
the selected configuration.

In our setting (Figure 5), the state-space is determined by
the following dimensions: (1) current buffer level, (2) previ-
ous bitrates chosen, and (3) the predicted throughput for the
next N chunks (i.e., the planning horizon). Thus, FastMPC
will entail enumerating potential scenarios capturing differ-

331



ent values for each dimension and solving the optimization
problems offline.

Unfortunately, directly using this idea will be very inef-
ficient as we have a high dimensional state space. For in-
stance, if we have 100 possible values for the buffer level,
10 possible bitrates, a horizon of size 5, and 1000 possi-
ble throughput values, there will be 1018 rows in the table!4

There are two obvious consequences of this large state space.
First, it may not be practical to explicitly store the full table
in the memory. Note that this is not just a hypothetical con-
cern. If we need a practical implementation of this table
lookup in the dash.js player [1] it will mean very high
memory footprint along with large startup delay as the ta-
ble needs to be downloaded to the player module. Second,
it will incur a non-trivial offline computation cost that may
need to be rerun as the operating conditions change.

5.2 Optimizing FastMPC Performance
Next, we present two key optimizations to make the table
enumeration approach tractable.

Compaction via binning: First, to address the offline ex-
ploration cost, our insight is that we may not need very fine-
grained values for the buffer and the throughput levels. As
a consequence these values may be suitably coarsened into
aggregate bins. Moreover, with binning we do not need
to explicitly store the row keys as these are directly com-
puted from the bin row indices. The challenge here is to
balance the granularity of binning and the loss of optimality
in practice. In practice, we find that using 100 bins for buffer
level and 100 bins for throughput predictions works well and
yields near-optimal performance.

Table compression: Our second insight is that the decision
table learned by the offline computation will have signifi-
cant structure. Specifically, the optimal solutions for several
similar scenarios will likely be the same. Thus, we can ex-
ploit this structure in conjunction with the binning strategy to
explore a simple lossless compression strategy using a run-
length encoding to store the decision vector. The optimal
decision can then be retrieved online using binary search.
In practice, we see that with compression the table occupies
less than 60 kB with 100 bins for buffer levels, 100 bins for
throughput predictions and 5 bitrate levels.

6 Implementation
In this section, we describe our implementation of the MPC
approach in the dash.js framework. Our implementation
is based on the dash.js master branch (v1.2.0 release) as
it was the stable version at the time of development. We be-
lieve that our implementation can be easily adapted to future
versions as we require minimal modifications (≈ 800 lines
of JavaScript). For more information on the source code and
demo please visit our demo page [14].

Choice of player: Many prior adaptive bitrate players were
prototyped using the Adobe OSMF framework [34, 3, 12]
4100 buffer levels × 10 bitrates × 1000 throughput 1 values
× · · ·× 1000 throughput 5 values = 1018 entries.

and this seemed a natural choice. However, our conversa-
tions with industry personnel revealed that almost all con-
tent providers are switching to HTML5-based players based
on the MPEG-DASH standard [16] and thus OSMF (based
on Flash and with decreasing market share) is unlikely to be
a platform with real-world impact. Having chosen a DASH
player, we qualitatively evaluated several implementations
of the DASH standard (e.g., [23, 8, 43]). Unfortunately,
these rely either on custom clients or niche video player plat-
forms. Given these considerations, we chose the dash.js
framework as it is the reference open-source implementation
for the MPEG-DASH standard and is actively supported by
leading industry participants [7]. We believe our prototype
efforts will also inform the evolution of these standardization
efforts. For instance, a key requirement for any control algo-
rithms is to know the size (in bytes) of each video chunk, but
the standard does not mandate the manifest to report chunk
sizes, which may be a key shortcoming of the current speci-
fication.

dash.js overview: To understand our implementation and
modifications, we begin with some brief background on the
architecture of the dash.js player. The key components
are highlighted in Figure 6.

At a high level, the dash.js implementation separates
high-level video streaming functionalities from low-level spe-
cific DASH standard related components. As we are not par-
ticularly interested in standard-specific implementation, we
leave the code unmodified and only focus on the adaptive
streaming related functions.

The classes and functions that are key to bitrate adaptation
and video streaming logic are as follows:
• BufferController: This class provides functions to

manage buffer levels of the player by requesting new seg-
ments and making bitrate change decisions. Specifically,
function validate is periodically invoked and calls
getPlaybackQuality function in AbrController
class to find optimal bitrate. It also maintains a variable
bufferLevel to record the current buffer occupancy
of the player, which can be used for bitrate decisions.
• AbrController: This class contains the core bitrate

adaptation logic. In the original dash.js implementa-
tion, a rule-based decision logic is employed to find the
bitrate. Specifically, DownloadRatioRule selects bi-
trate based on the “download ratio” (play time of last
chunk divided by its download time); On the other hand,
InsufficientBufferRule chooses bitrate depend-
ing on whether the buffer level has reached a lower limit
recently to avoid rebuffers. Priorities are assigned to each
rule to resolve conflicts and make final bitrate decisions.

Modifications and extensions: We observed two imple-
mentation details in dash.js that were problematic. First,
the code periodically calls the validate function to check
the status of the buffer and call functions in AbrController
to decide if the current bitrate should be changed. Note
that this implies the bitrate decisions are not always made
at chunk boundaries, which may lead to delay of execution
of bitrate decisions, or even redownloading previous chunks.

332



BufferController

validate

AbrController

getPlaybackQuality

Rule-Based 

Decision Logic

FastMPClogging

RB, BB, FESTIVE

ThroughputPredictor

Original dash.js Additional class/function

Figure 6: dash.js code structure and our modifications

Second, the dash.js downloads multiple chunks in paral-
lel even though chunks that are earlier in the video stream
should ideally be prioritized.

To address these concerns, we changed the bitrate de-
cision and chunk download process in dash.js code by
making two key changes to BufferController class:
1) bitrate decisions are made at the start of each chunk, 2)
chunk download is completely sequential, i.e., no concur-
rent downloads of multiple chunks are allowed. This allows
a basic implementation framework which is consistent with
our model and other proposed algorithms.

With these fixes, we implemented different bitrate adap-
tation algorithms (e.g., FastMPC, BB, RB) by replacing the
original rule-based bitrate adaptation logic by our own im-
plementation. The FastMPC implementation has a static ta-
ble that is used to index control decisions. We also imple-
mented a harmonic mean based throughput prediction scheme
based on prior work [34], as well as additional logging func-
tions in the BufferController class to record a com-
plete log of the state of the player, including buffer level,
bitrates, rebuffer time, predicted/actual throughput.

7 Evaluation
In this section, we compare our approach against existing
rate- and buffer-based approaches using a combination of
real player and simulation experiments. We also present mi-
crobenchmarks on the CPU and memory overhead of our
FastMPC implementation.

7.1 Setup
We begin by describing key parameters: (1) throughput vari-
ability traces; (2) video-specific parameters; (3) configura-
tions for various adaptation algorithms; and (4) definition of
a normalized QoE metric that we use throughout this section.

7.1.1 Input Parameters

Throughput traces: Our goal is to evaluate various bitrate
adaptation approaches using realistic network variability con-
ditions. Given the paucity of large-scale sustained through-
put measurements over several tens of seconds, however, we
use a combination of existing datasets and synthetic models:
1. Broadband dataset (FCC) [9]: The FCC dataset consists

of more than 1 million sets of throughput measurements,
where each set contains six data points each represent-
ing average throughput during a 5s interval. We extract
throughput traces of the same server and client IP address
and concatenate these to match the length of the video.
For experiments we randomly pick 1000 of the concate-
nated traces whose average throughput is between 0 to

3Mbps, to avoid trivial cases where picking the maxi-
mum bitrate is always the optimal solution.

2. Mobile dataset (HSDPA) [10]: The HSDPA dataset con-
sists of 30min of continuous 1s measurement of video
streaming throughput of a moving device in Telenor’s
3G/HSDPA mobile wireless network in Norway. We ran-
domly pick 1000 throughput traces from the full dataset.

3. Synthetic dataset: Finally we also use a synthetic dataset
to supplement the aforementioned datasets. The through-
put is based on some hidden state St ∈ S modeling
the number of users sharing a bottleneck link. The ac-
tual throughput Ct follows a Gaussian distribution with
meanms and variance σ2

s , given the value of hidden state
St = s. We vary both the state transition probability ma-
trix as well as the parameters ms, σ2

s to generate traces.
Figure 7 shows the throughput characteristics of all three

datasets. Among three datasets, throughput is the most sta-
ble in broadband network and the most variable in mobile
network. In other words, the HSPDA dataset is a good stress
test for our MPC approach that assumes the throughput is
predictable on short timescales.

Video parameters: We use the “Envivio” video from DASH-
264 JavaScript reference client test page [6] which is 260s
long, consisting of 65 4s chunks. The video is encoded by
H.264/MPEG-4 AVC codec in the following bitrate levels:
R = {350kbps, 600kbps, 1000kbps, 2000kbps, 3000kbps}.
This is consistent with the requirement for YouTube video
bitrate levels for 240p, 360p, 480p, 720p and 1080p respec-
tively [15]. We set the buffer size to Bmax = 30s. We as-
sume q(·) is an identity function. As a default QoE function,
we use the weights λ = 1, µ = µs = 3000, meaning 1-sec
rebuffer/start-up time receives the same penalty as reducing
the bitrate of a chunk by 3000 kbps. We also run sensitivity
experiments that vary the QoE weights.

7.1.2 Algorithms and Metrics

Adaptation algorithms: Determining the optimal algorithm
within each class is difficult as it involves optimizing over
an infinite-dimensional functional space. To this end, we
choose a widely adopted function form for each class of
algorithms from prior work, and optimize the free param-
eters by empirical simulations based on a training dataset
containing 100 throughput traces randomly picked across all
datasets. We evaluate the following algorithms:
1. RB: The bitrate is picked as the maximum available bi-

trate which is less than p = 1 times throughput prediction
using harmonic mean of past 5 chunks;

2. BB: We employ the function suggested by Huang et al [33],
where bitrate Rk is chosen to be the maximum avail-
able bitrate which is less than rk = f(Bk) with reservoir
r = 5s and cushion c = 10s.

3. FastMPC: We use a look-ahead horizon h = 5 with
throughput predictions using harmonic mean of past 5
chunks; We use 100 bins for throughput prediction and
100 bins for buffer level. We also evaluate the exact MPC
with perfect throughput prediction for the next 5 chunks
in simulations (denoted as MPC-OPT).

333



0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Mean Throughput (kbps)

C
D

F

 

 

FCC
HSDPA
Synthetic

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Standard Deviation of Throughput (kbps)

C
D

F

 

 

FCC
HSDPA
Synthetic

−0.1 0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Average Percentage Prediction Error

C
D

F

 

 

FCC
HSDPA
Synthetic

Figure 7: Characteristics of datasets

−0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Normalized QoE

C
D

F

 

 

RB
BB
FastMPC
RobustMPC
dash.js
FESTIVE

(a) FCC dataset

−0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Normalized QoE

C
D

F

 

 

RB
BB
FastMPC
RobustMPC
dash.js
FESTIVE

(b) HSDPA dataset

−0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Normalized QoE

C
D

F

 

 

RB
BB
FastMPC
RobustMPC
dash.js
FESTIVE

(c) Synthetic dataset

Figure 8: Real experiment results with different throughput traces

4. RobustMPC: We assume that the throughput lower bound
is Ĉt = Ĉt/(1 + err), where Ĉt is obtained using har-
monic mean of past 5 chunks, while prediction error err
is the maximum absolute percentage error of the past 5
chunks.

5. dash.js: The original implementation adopts a rule-
based bitrate decision logic as shown in Section 6. We
keep the original bitrate adaptation logic unmodified, but
disable the multi-chunk downloading and allow the bi-
trate to switch only at chunk boundaries.5

6. FESTIVE [34]: This rate-based algorithm balances both
efficiency and stability, and incorporates fairness across
players but that is not a concern in this paper. We assume
there is no wait time between consecutive chunk down-
loads, and implement FESTIVE without the randomized
chunk scheduling. Note that this does not negatively im-
pact the player QoE in single player case. Specifically,
FESTIVE calculates the efficiency score depending on
p = 1 times throughput predictions using harmonic mean
of past 5 chunks, as well as a stability score as a function
of the bitrate switches in the past 5 chunks. The bitrate
is chosen to minimize stability score plus α = 12 times
efficiency score.

Throughput predictor: Note that RB, *-MPC, and FES-
TIVE need a good throughput predictor. Developing good
predictors for different scenarios is outside the scope of the
paper. Building on insights from prior work, we use the har-
monic mean of the observed throughput of the last 5 chunks
because it is robust to outliers in per-chunk estimates [34].
We revisit this issue in Section 8.
5This enables a consistent comparison of the algorithms
rather than conflate it with other artifacts because of paral-
lel downloads. We also tested the original dash.js with-
out any modification, but its performance is worse than our
modified version (not shown).

Normalized QoE metric: We define a normalized QoE met-
ric as follows. For a given throughput trace {Ct, t ∈ [t1, tK+1]},
the offline optimal QoE, denoted byQoE(OPT ), is the max-
imum QoE that can be achieved with perfect knowledge of
future throughputs over the entire horizon. It can be cal-
culated by solving problem QOE_MAXK

1
6 and provides

a theoretical upper bound of achievable QoE. On the other
hand, a real online algorithm A selects bitrate Rk based on
current throughput predictions {Ĉt, t > tk} without know-
ing the entire future. We denote the online QoE achieved by
algorithmA byQoE(A) and define normalized QoE of A (n-
QoE(A)) for an algorithm A as: n-QoE(A) = QoE(A)

QoE(OPT ) .

7.2 Real Player Evaluation
First, we present emulations with the real player setup com-
paring our FastMPC approach against several prior approaches.
Our basic experiment setup consists of two computers (Ubuntu
12.04 LTS) with a 100Mbps direct network connection emu-
lating a video client and server. The video client is a Google-
Chrome web browser for linux (version 39) with V8 JavaScript
engine while the video server is a simple HTTP server based
on node.js (version 0.10.32). We use the linux tc tool
to throttle the throughput of the link between two computers
according to the throughput traces employed. We use Emu-
lab [49] to carry out several such experiments in parallel.

Figure 8 show the CDF of normalized QoE over the three
sets of throughput traces. First, we see that existing algo-
rithms achieve only 60-70% of optimal QoE confirming that
there is still large room to improve video QoE. Second, Ro-
bustMPC outperforms non-MPC algorithms in all datasets
with an improvement in median normalized QoE of 15%,
10%, and 5% in the FCC, HSDPA, and Synthetic datasets
6To make it tractable to compute this offline optimal,
we assume it can pick bitrates from a continuous range
[Rmin, Rmax].

334



0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Average Bitrate (kbps)

C
D

F

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

Average Bitrate Change (kbps/chunk)

C
D

F

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Total Rebuffer Time (s)

C
D

F

 

 

RB
BB
FastMPC
RobustMPC
dash.js
FESTIVE

Figure 9: Detailed performance for FCC dataset

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Average Bitrate (kbps)

C
D

F

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

Average Bitrate Change (kbps/chunk)

C
D

F

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Total Rebuffer Time (s)

C
D

F

 

 

RB
BB
FastMPC
RobustMPC
dash.js
FESTIVE

Figure 10: Detailed performance for HSDPA dataset

respectively. Third, we see significant improvement (60+%
median normalized QoE) compared with the original dash.js
player. Finally, we see that the basic FastMPC is more sen-
sitive to prediction errors than RobustMPC. While there is
no difference between Fast- and RobustMPC on FCC and
Synthetic results, the difference is especially visible in the
HSPDA result where regular FastMPC suffers and presents
no gains versus RB and BB.

To better understand the impact of prediction error, Fig-
ure 7 shows the CDF of per-session average percentage pre-
diction errors for the datasets. In FCC dataset, the average
error of our harmonic mean throughput predictor is less than
5%, while in HSPDA dataset, the worst-case prediction er-
ror can be as high as 40%. We also observe that the predictor
over-estimates the true throughput for more than 20% of the
time in HSPDA dataset which leads to significant rebuffer-
ing. As such, inaccurate prediction can ruin the decision
making of regular FastMPC, while RobustMPC is less af-
fected as it incorporates prediction error to avoid choosing
bitrate too aggressively when predictions are inaccurate.

The earlier normalized QoE result shows the aggregate
combination of different QoE factors. Next, we zoom in on
the individual quality factors to explain the QoE improve-
ments in Figures 9 and 10. In the FCC dataset, all algo-
rithms achieve similarly low rebuffer time as throughput is
predictable. The performance difference essentially stems
from reducing unnecessary bitrate switches. RobustMPC,
FastMPC and BB achieve similar average bitrates, but Ro-
bustMPC uses fewer bitrate switches. In the HSPDA re-
sult, rebuffer time becomes a more important issue. While
FastMPC achieves similar average bitrate and fewer switches
comparing to BB, it suffers from large rebuffer time. On the
other hand, RobustMPC achieves significant less rebuffer
time but at a slightly lower average bitrate: Zero rebuffer
in 65% of all cases, versus 40% for BB and FastMPC. As
a result, RobustMPC still outperforms other algorithms in
overall QoE.

Doing a cross-dataset analysis, we see that the tail distri-
butions of the overall QoE show different characteristics. In
the FCC result, only 1% users experience normalized QoE
<0 while in HSPDA this occurs in 10% of all cases.7 Again,
the main reason is that the high variability of mobile network
induces long rebuffering which affects the overall QoE.

Finally, even though FESTIVE is a rate-based algorithm,
it performs slightly worse than regular RB in our datasets
because it puts a higher weight on stability and switches up
bitrate slowly even when the available throughput is increas-
ing.8 On the other hand, the dash.js heuristic rule-based
adaptation achieves low rebuffer time, but incurs many un-
necessary switches. Thus, its overall QoE is significantly
worse than all algorithms.

7.3 Sensitivity Analysis
For sensitivity analysis we evaluate different algorithms us-
ing a custom simulation framework. As before, the simula-
tion takes as input a throughput trace and models the video
download/playback process and the buffer dynamics. At
time tk when the bitrate of chunk k is needed, the simula-
tion calls the bitrate controller embedded with different al-
gorithms to get Rk. Using this framework, we study the
sensitivity of the approaches to key factors such as: (1) pre-
diction error, (2) choice of QoE function, (3) playout buffer
size, (4) number of bitrate levels, and (5) startup delay.
Throughput prediction: Here, we want to study the impact
of prediction error of general predictors rather than analyze
a particular one (e.g., harmonic mean). To this end, we use
the average error level to characterize the performance of a
throughput predictor and model the prediction output as be-
ing a combination of the true throughput with added random
noise according to the average error level. Figure 11a shows
7The QoE can be negative when rebuffer time is too long or
there are too many switches.
8This is not a flaw, but a deliberate choice for achieving
multi-player fairness [34].

335



0.1 0.2 0.3 0.4 0.5
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Prediction Error

n
−

Q
o
E

 

 

MPC
BB
RB

(a) Prediction error

Balanced Avoid Instability Avoid Rebuffering
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

QoE Preference

n
−

Q
o

E

 

 

MPC−OPT
FastMPC
BB
RB

(b) QoE preferences

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Buffer Size (s)

n
−

Q
o
E

 

 

MPC−OPT
FastMPC
BB
RB

(c) Buffer size

2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1

Startup Time (s)

n
−

Q
o
E

 

 

MPC−OPT
FastMPC
BB
RB

(d) Startup time

Figure 11: Sensitivity analysis vs. operating conditions

how the throughput prediction errors influence the perfor-
mance of bitrate adaptation algorithms. As expected, BB
is unaffected as it does not use any throughput information.
When throughput predictions are accurate, MPC has larger
advantage over BB algorithms. As prediction error grows
beyond 25%, MPC can be even worse than BB. This sug-
gests that if the actual prediction error is very large, then the
video player should drop RB or MPC and use pure BB al-
gorithms. In contrast with regular MPC, robust MPC is less
affected by prediction error as it takes into possible error into
account and maximizes the worst case QoE.

Users’ QoE preferences: We compared the performance
of the algorithms under 3 sets of QoE weights, “Balanced”
(λ = 1, µ = µs = 3000), “Avoid Instability” (λ = 3, µ =
µs = 3000), “Avoid Rebuffering” (λ = 1, µ = µs = 6000).
As shown in Figure 11b, as users put more penalty weights to
bitrate instability, the MPC algorithms show more advantage
over RB and BB. This is because MPC algorithms explicitly
model the bitrate vs. bitrate instability tradeoff in the QoE
function, while RB and BB do so in ad-hoc ways. However,
when rebuffering time is a more important factor, BB algo-
rithms perform similarly with FastMPC algorithms because
of two key reasons. First, BB algorithms keep a minimum
buffer level so that the player has a better chance surviv-
ing low throughput with less/no rebuffering time. Second,
while MPC algorithms do a good job with perfect through-
put prediction, they can suffer from long rebuffering time
since harmonic mean predictor is imperfect. As such, MPC
can be improved by maintaining a minimum buffer level and
employing a more accurate predictor.

Buffer size and startup delay: Figure 11c analyzes the
impact of playout buffer size. First, when buffer size is
small (<25s in play time), increasing buffer size improves
the performance of all algorithms. A larger buffer protects
the player against rebuffering events and also provides more
degrees of freedom to optimize performance. As buffer size
reaches a certain level (25s of play time), the performances
of all algorithms stay constant even buffer size is further in-
creased. Finally, RB is the least affected by buffer size be-
cause it does not consider buffer level in its decision logic.

While our approach optimizes startup delay automatically,
we analyze how overall QoE (except the startup delay term)
is affected if the startup delay is fixed. As shown in Fig-
ure 11d, as startup time increases, the performance of all
algorithms improves, as the player accumulates more video

in the buffer at the start-up phase making it easier to manage
rebuffering events.
Bitrate levels: We also study how number of bitrate levels
influences the performance (not shown). With BB and MPC,
we can achieve better performance using finer-grained set of
bitrate levels. With RB, however, the performance of RB
first improves as we add more bitrate levels, but decreases
when there are too many bitrate levels. The reason is that RB
starts changing bitrate more frequently, leading to increased
bitrate instability. One caveat with MPC is that finer-grained
bitrate levels also require more discretization levels for the
FastMPC implementation. Understanding this tradeoff is an
interesting direction for future work.

7.4 MPC Configuration and Overhead
Overhead: As discussed earlier, FastMPC might increase
player overhead relative to BB and RB style algorithms. We
compare the CPU and memory usage of our implementa-
tion of FastMPC, BB, and RB algorithm with the default
dash.js player. We find that FastMPC, BB, and RB all
consume similar amount of CPU, while FastMPC uses only
60 kB more memory (not shown).
FastMPC discretization: Recall that the number of dis-
cretization levels is an important design parameter for FastMPC.
More discretization levels increase FastMPC performance
but require more player memory and may also increase startup
delay. We study this performance vs. overhead tradeoff
in Figure 12a and Table 1. From Figure 12a, we see that
more discretization levels imply larger performance gains
for FastMPC but the improvement shows diminishing return;
e.g., FastMPC achieves 90% of optimal QoE with 100 levels
while this drops to 70% if there are only 5 levels. Second,
the gain vs. discretization level also has some dependency
on the throughput predictor especially with very coarse dis-
cretization. Table 1 shows that while the memory overhead

Discretization levels
Extra JavaScript code size

Full table Run length coding

50 25.0 kB 19.1 kB
100 100 kB 56.4 kB
200 400 kB 141 kB
500 2.50 MB 451 kB

Table 1: FastMPC table size

336



5 10 50 100 500
0

0.2

0.4

0.6

0.8

1

FastMPC Discretization Levels

n
−

Q
o
E

 

 

FastMPC + Perfect Prediction
FastMPC + Harmonic Mean

(a) Discretization

2 3 4 5 6 7 8 9
0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

Look−Ahead Horizon (chunk)

n
−

Q
o
E

 

 

MPC, Error = 10%
MPC, Error = 15%
MPC, Error = 20%

(b) Look-ahead horizon

Figure 12: MPC configuration parameters

increases with more levels, the simple compression scheme
we discussed earlier can reduce the memory overhead espe-
cially when number of levels is large. For instance, with 100
levels the compression rate is 0.5 while with 500 levels it can
reduce the table size by 82%. Even with 500 levels, the table
size is quite reasonably low.

Look-ahead horizon: Figure 12b shows how planning hori-
zon impacts the performance of MPC algorithms. As the
look-ahead horizon increases, MPC performances grow and
stay stable since more information of future throughput is
taken into account. However, as we look further into the fu-
ture, prediction accuracy can reduce. The performance of
MPC can even drop if the horizon is too large.

7.5 Summary of Results
Our main findings are summarized as follows:

1. RobustMPC outperforms existing algorithms in both broad-
band (FCC) and cellular (HSDPA) datasets, while regular
FastMPC does not show advantage in cellular network
due to high throughput instability;

2. Our implementation of FastMPC algorithm incurs very
low overhead: near-zero CPU overhead and 60 kB in-
crease in memory usage compared to original dash.js;

3. Sensitivity analysis shows that FastMPC has advantages
over BB and RB in wide parameter ranges. However,
there is still room for improvement by increasing FastMPC
discretization granularity and employing more accurate
throughput predictors.

8 Discussion
Before concluding, we revisit two outstanding issues.

Multi-player effects: In this paper, we focused purely on
improving the design of a single video player. A natural
question is to extend these insights to multiple players and
interaction with cross traffic [34, 32]. To fully consider multi-
player interaction and fairness, we can extend our control-
theoretic model to explicitly consider a fairness term in the
QoE function and model the effects of TCP on throughput
allocation. For instance, we might be able to reason about
fairness from the perspective of game theory or distributed
control theory in this context. This is an interesting direction
for future research.

Throughput prediction: As observed by other researchers,
better throughput prediction can improve video performance
in cellular networks [52]. A key limitation of our work is
that we do not have accurate algorithms for throughput pre-
diction and the literature is surprisingly scarce and dated [30,
51, 20]. Two interesting directions of future work are in us-
ing crowdsourced approaches based on measurements from
other clients [41] and developing a better understanding of
throughput predictability and stability in the wild.

9 Conclusions
Our paper was motivated by recent debates surrounding the
design of dynamic adaptive streaming over HTTP (DASH)
algorithms. To bring some rigor to this space, we developed
a control-theoretic problem formulation that allowed us to
explore the design space systematically and evaluate quan-
titatively different classes of solutions through well-defined
QoE metrics. With the key insights that a broader design
space is available compared to existing solutions, we de-
signed and implemented a model predictive control approach
to optimally combine buffer occupancy and throughput pre-
dictions in order to maximize the user’s QoE. We demon-
strated a practical implementation of MPC using the dash.js
reference video player. Our trace-driven emulations using
realistic throughput variability traces confirmed the advan-
tages over state of the art solutions in a wide range of oper-
ating conditions with negligible increase in computation and
memory requirements. As future work, we plan to incor-
porate more accurate throughput predictions and explicitly
capture multi-player interactions.

Acknowledgments
This work was supported in part by the National Science
Foundation under awards ECCS-0925964 and CNS-1345305.
We thank our shepherd Keith Winstein for helping us im-
prove the final version. We thank Aditya Ganjam and David
Oran for useful discussions regarding industry player plat-
forms that informed our implementation.

10 References

[1] Dash-Industry-Forum, dash.js .
https://github.com/Dash-Industry-Forum/dash.js/wiki.

[2] Adobe HTTP Dynamic Streaming.
www.adobe.com/products/hds-dynamic-streaming.html.

[3] Adobe OSMF player. http://www.osmf.org.
[4] Akamai HD network. www.akamai.com/hdnetwork.
[5] Apple’s HTTP Live Streaming.

https://developer.apple.com/streaming/.
[6] DASH-264 JavaScript reference client landing page 1.4.0.

http://dashif.org/reference/players/javascript/1.4.0/samples/
dash-if-reference-player/index.html.

[7] DASH Industry Forum members. http://dashif.org/members/.
[8] DASH VLC plugin.

http://www-itec.uni-klu.ac.at/dash/?page_id=10.
[9] FCC dataset.

https://www.fcc.gov/measuring-broadband-america.
Accessed: 2014-12-01.

337



[10] HSDPA dataset.
http://home.ifi.uio.no/paalh/dataset/hsdpa-tcp-logs.
Accessed: 2014-12-01.

[11] Netflix. http://www.netflix.com/.
[12] OSMF 2.0 release code. http:

//sourceforge.net/projects/osmf.adobe/files/latest/download.
[13] Smooth Streaming protocol.

http://go.microsoft.com/?linkid=9682896.
[14] The demo page for our MPC-based bitrate adaptation.

http://users.ece.cmu.edu/~vsekar/mpcdash.html.
[15] YouTube live encoder settings, bitrates and resolutions.

https://support.google.com/youtube/answer/2853702?hl=en.
[16] I. Sodagar. The MPEG-DASH Standard for Multimedia

Streaming Over the Internet. IEEE Multimedia, 2011.
[17] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C.

Begen. What Happens when HTTP Adaptive Streaming
Players Compete for Bandwidth? In Proc. NOSSDAV, 2012.

[18] S. Akhshabi, L. Ananthakrishnan, A. Begen, and
C. Dovrolis. Server-Based Traffic Shaping for Stabilizing
Oscillating Adaptive Streaming Players. In Proc. ACM
SIGMM NOSSDAV, 2013.

[19] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica,
and H. Zhang. Developing a Predictive Model of Quality of
Experience for Internet Video. In Proc. ACM SIGCOMM,
2013.

[20] H. Balakrishnan, M. Stemm, S. Seshan, and R. H. Katz.
Analyzing Stability in WideArea Network Performance. In
Proc. ACM SIGMETRICS, 1997.

[21] D. P. Bertsekas, D. P. Bertsekas, D. P. Bertsekas, and D. P.
Bertsekas. Dynamic Programming and Optimal Control,
volume 1. Athena Scientific Belmont, MA, 1995.

[22] E. F. Camacho and C. B. Alba. Model Predictive Control.
Springer, 2013.

[23] L. D. Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo.
TAPAS: a Tool for rApid Prototyping of Adaptive Streaming
algorithms. In Proc. CoNext VideoNext workshop, 2014.

[24] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. A. Joseph,
A. Ganjam, J. Zhan, and H. Zhang. Understanding the
Impact of Video Quality on User Engagement. In Proc. ACM
SIGCOMM, 2011.

[25] G. F. Franklin, J. D. Powell, and M. L. Workman. Digital
Control of Dynamic Systems, volume 3. Addison-wesley
Menlo Park, 1998.

[26] A. Ganjam, F. Siddiqui, J. Zhan, X. Liu, I. Stoica, J. Jiang,
V. Sekar, and H. Zhang. C3: Internet-Scale Control Plane for
Video Quality Optimization. In Proc. NSDI, 2015.

[27] M. Ghobadi, Y. Cheng, A. Jain, and M. Mathis. Trickle: Rate
Limiting YouTube Video Streaming. In Proc. USENIX ATC,
2012.

[28] S. Gouache, G. Bichot, A. Bsila, and C. Howson. Distributed
and Adaptive HTTP Streaming. In Proc. ICME, 2011.

[29] D. Havey, R. Chertov, and K. Almeroth. Receiver Driven
Rate Adaptation for Wireless Multimedia Applications. In
Proc. MMSys, 2012.

[30] Q. He, C. Dovrolis, and M. Ammar. On the Predictability of
Large Transfer TCP Throughput. In Proc. ACM SIGCOMM,
2005.

[31] R. Houdaille and S. Gouache. Shaping HTTP Adaptive
Streams for a Better User Experience. In Proc. MMSys, 2012.

[32] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and
R. Johari. Confused, Timid, and Unstable: Picking a Video
Streaming Rate is Hard. In Proc. IMC, 2012.

[33] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and
M. Watson. A Buffer-Based Approach to Rate Adaptation:

Evidence from a Large Video Streaming Service. In Proc.
ACM SIGCOMM, 2014.

[34] J. Jiang, V. Sekar, and H. Zhang. Improving Fairness,
Efficiency, and Stability in HTTP-based Adaptive Video
Streaming with FESTIVE. In Proc. CoNext, 2012.

[35] S. S. Krishnan and R. K. Sitaraman. Video Stream Quality
Impacts Viewer Behavior: Inferring Causality using
Quasi-Experimental Designs. In Proc. IMC, 2012.

[36] R. Kuschnig, I. Kofler, and H. Hellwagner. Evaluation of
HTTP-based Request-Response Streams for Internet Video
Streaming. Multimedia Systems, pages 245–256, 2011.

[37] L. De Cicco, S. Mascolo, and V. Palmisano. Feedback
Control for Adaptive Live Video Streaming. In Proc. of ACM
Multimedia Systems Conference, 2011.

[38] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. Begen, and
D. Oran. Probe and Adapt: Rate Adaptation for HTTP Video
Streaming at Scale. Selected Areas in Communications,
IEEE Journal on, 32(4):719–733, 2014.

[39] C. Liu, I. Bouazizi, and M. Gabbouj. Parallel Adaptive
HTTP Media Streaming. In Proc. ICCCN, 2011.

[40] H. Liu, Y. Wang, Y. R. Yang, A. Tian, and H. Wang.
Optimizing Cost and Performance for Content Multihoming.
In Proc. ACM SIGCOMM, 2012.

[41] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica,
and H. Zhang. A Case for a Coordinated Internet Video
Control Plane. In Proc. ACM SIGCOMM, 2012.

[42] R. K. P. Mok, X. Luo, E. W. W. Chan, and R. K. C. Chang.
QDASH: A QoE-aware DASH system. In Proc. MMSys,
2012.

[43] C. Mueller, S. Lederer, J. Poecher, and C. Timmerer. Libdash
- An Open Source Software Library for the MPEG-DASH
Standard. In Proc. ICME, 2013.

[44] L. Popa, A. Ghodsi, and I. Stoica. HTTP as the Narrow Waist
of the Future Internet. In Proc. HotNets, 2010.

[45] R. Rejaie and J. Kangasharju. Mocha: A Quality Adaptive
Multimedia Proxy Cache for Internet Streaming. In Proc.
NOSSDAV, 2001.

[46] S. Akhshabi, A. Begen, C. Dovrolis. An Experimental
Evaluation of Rate Adaptation Algorithms in Adaptive
Streaming over HTTP. In Proc. MMSys, 2011.

[47] G. Tian and Y. Li. Towards Agile and Smooth Video
Adaption in Dynamic HTTP Streaming . In Proc. CoNext,
2012.

[48] Y. Wang and S. Boyd. Fast Model Predictive Control using
Online Optimization. Control Systems Technology, IEEE
Transactions on, 18(2):267–278, 2010.

[49] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
Integrated Experimental Environment for Distributed
Systems and Networks. Proc. OSDI, 2002.

[50] X. Yin, V. Sekar, and B. Sinopoli. Toward a Principled
Framework to Design Dynamic Adaptive Streaming
Algorithms over HTTP. In Proc. ACM SIGCOMM HotNets,
2014.

[51] Y. Zhang and N. Duffield. On the Constancy of Internet Path
Properties. In IMW, 2001.

[52] X. K. Zou, J. Erman, V. Gopalakrishnan, E. Halepovic,
R. Jana, X. Jin, J. Rexford, and R. K. Sinha. Can Accurate
Predictions Improve Video Streaming in Cellular Networks?
In Proc. ACM HotMobile, 2015.

338




