
This is a reformatted version of the paper that appears in SIGCOMM’s proceedings

Using RDMA Efficiently for Key-Value Services

Anuj Kalia Michael Kaminsky† David G. Andersen
Carnegie Mellon University †Intel Labs

{akalia,dga}@cs.cmu.edu michael.e.kaminsky@intel.com

ABSTRACT

This paper describes the design and implementation of HERD,
a key-value system designed to make the best use of an
RDMA network. Unlike prior RDMA-based key-value sys-
tems, HERD focuses its design on reducing network round
trips while using efficient RDMA primitives; the result is sub-
stantially lower latency, and throughput that saturates modern,
commodity RDMA hardware.

HERD has two unconventional decisions: First, it does not
use RDMA reads, despite the allure of operations that bypass
the remote CPU entirely. Second, it uses a mix of RDMA
and messaging verbs, despite the conventional wisdom that
the messaging primitives are slow. A HERD client writes its
request into the server’s memory; the server computes the
reply. This design uses a single round trip for all requests and
supports up to 26 million key-value operations per second
with 5 µs average latency. Notably, for small key-value items,
our full system throughput is similar to native RDMA read
throughput and is over 2X higher than recent RDMA-based
key-value systems. We believe that HERD further serves as
an effective template for the construction of RDMA-based
datacenter services.

Keywords
RDMA; InfiniBand; RoCE; Key-Value Stores

1. INTRODUCTION

This paper explores a question that has important implications
for the design of modern clustered systems: What is the best
method for using RDMA features to support remote hash-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses. contact the
Owner/Author.
Copyright is held by the owner/author(s).
SIGCOMM’14, Aug 17-22 2014, Chicago, IL, USA
ACM 978-1-4503-2836-4/14/08.
http://dx.doi.org/10.1145/2619239.2626299

table access? To answer this question, we first evaluate the
performance that, with sufficient attention to engineering, can
be achieved by each of the RDMA communication primitives.
Using this understanding, we show how to use an unexpected
combination of methods and system architectures to achieve
the maximum performance possible on a high-performance
RDMA network.

Our work is motivated by the seeming contrast between
the fundamental time requirements for cross-node traffic vs.
CPU-to-memory lookups, and the designs that have recently
emerged that use multiple RDMA (remote direct memory ac-
cess) reads. On one hand, going between nodes takes roughly
1-3 µs, compared to 60-120 ns for a memory lookup, sug-
gesting that a multiple-RTT design as found in the recent
Pilaf [21] and FaRM [8] systems should be fundamentally
slower than a single-RTT design. But on the other hand, an
RDMA read bypasses many potential sources of overhead,
such as servicing interrupts and initiating control transfers,
which involve the host CPU. In this paper, we show that
there is a better path to taking advantage of RDMA to achieve
high-throughput, low-latency key-value storage.

A challenge for both our and prior work lies in the lack of
richness of RDMA operations. An RDMA operation can only
read or write a remote memory location. It is not possible
to do more sophisticated operations such as dereferencing
and following a pointer in remote memory. Recent work in
building key-value stores [21, 8] has focused exclusively on
using RDMA reads to traverse remote data structures, similar
to what would have been done had the structure been in local
memory. This approach invariably requires multiple round
trips across the network.

Consider an ideal RDMA read-based key-value store (or
cache) where each GET request requires only 1 small RDMA
read. Designing such a store is as hard as designing a hash-
table in which each GET request requires only one random
memory lookup. We instead provide a solution to a simpler
problem: we design a key-value cache that provides perfor-
mance similar to that of the ideal cache. However, our design
does not use RDMA reads at all.

In this paper, we present HERD, a key-value cache that
leverages RDMA features to deliver low latency and high

throughput. As we demonstrate later, RDMA reads cannot
harness the full performance of the RDMA hardware. In
HERD, clients transmit their request to the server’s memory
using RDMA writes. The server’s CPU polls its memory for
incoming requests. On receiving a new request, it executes the
GET or PUT operation in its local data structures and sends
the response back to the client. As RDMA write performance
does not scale with the number of outbound connections,
the response is sent as a SEND message over a datagram
connection.

Our work makes three main contributions:

• A thorough analysis of the performance of RDMA verbs
and expose the various design options for key-value
systems.

• Evidence that “two-sided” verbs are better than RDMA
reads for key-value systems, refuting the previously held
assumption [21, 8].

• Describing the design and implementation of HERD,
a key-value cache that offers the maximum possible
performance of RDMA hardware.

The following section briefly introduces key-value stores
and RDMA, and describes recent efforts in building key-value
stores using RDMA. Section 3 discusses the rationale behind
our design decisions and demonstrates that messaging verbs
are a better choice than RDMA reads for key-value systems.
Section 4 discusses the design and implementation of our
key-value cache. In Section 5, we evaluate our system on a
cluster of 187 nodes and compare it against FaRM [8] and
Pilaf [21].

2. BACKGROUND

This section provides background information on key-value
stores and caches, which are at the heart of HERD. We then
provide an overview of RDMA, as is relevant for the rest of
the paper.

2.1 Key-Value stores
DRAM-based key-value stores and caches are widespread
in large-scale Internet services. They are used both as pri-
mary stores (e.g., Redis [4] and RAMCloud [23]), and as
caches in front of backend databases (e.g., Memcached [5]).
At their most basic level, these systems export a traditional
GET/PUT/DELETE interface. Internally, they use a variety
of data structures to provide fast, memory-efficient access to
their underlying data (e.g., hash table or tree-based indexes).

In this paper, we focus on the communication architecture
to support both of these applications; we use a cache imple-
mentation for end-to-end validation of our resulting design.

Although recent in-memory object stores have used both
tree and hash table-based designs, this paper focuses on hash
tables as the basic indexing data structure. Hash table de-
sign has a long and rich history, and the particular flavor one

chooses depends largely on the desired optimization goals. In
recent years, several systems have used advanced hash table
designs such as Cuckoo hashing [24, 17, 9] and Hopscotch
hashing [12]. Cuckoo hash tables are an attractive choice
for building fast key-value systems [9, 31, 17] because, with
K hash functions (usually, K is 2 or 3), they require only
K memory lookups for GET operations, plus an additional
pointer dereference if the values are not stored in the table
itself. In many workloads, GETs constitute over 95% of the
operations [6, 22]. This property makes cuckoo hashing an
attractive backend for an RDMA-based key-value store [21].
Cuckoo and Hopscotch-based designs often emphasize work-
loads that are read-intensive: PUT operations require moving
values within the tables. We evaluate both balanced (50%
PUT/GET) and read-intensive (95% GET) workloads in this
paper.

To support both types of workloads without being limited
by the performance of currently available data structure op-
tions, HERD internally uses a cache data structure that can
evict items when it is full. Our focus, however, is on the
network communication architecture—our results generalize
across both caches and stores, so long as the implementa-
tion is fast enough that a high-performance communication
architecture is needed. HERD’s cache design is based on
the recent MICA [18] system that provides both cache and
store semantics. MICA’s cache mode uses a lossy associative
index to map keys to pointers, and stores the values in a cir-
cular log that is memory efficient, avoids fragmentation, and
does not require expensive garbage collection. This design
requires only 2 random memory accesses for both GET and
PUT operations.

2.2 RDMA

Remote Direct Memory Access (RDMA) allows one com-
puter to directly access the memory of a remote computer
without involving the operating system at any host. This en-
ables zero-copy transfers, reducing latency and CPU overhead.
In this work, we focus on two types of RDMA-providing in-
terconnects: InfiniBand and RoCE (RDMA over Converged
Ethernet). However, we believe that our design is applicable
to other RDMA providers such as iWARP, Quadrics, and
Myrinet.

InfiniBand is a switched fabric network widely used in
high-performance computing systems. RoCE is a relatively
new network protocol that allows direct memory access over
Ethernet. InfiniBand and RoCE NICs achieve low latency by
implementing several layers of the network stack (transport
layer through physical layer) in hardware, and by providing
RDMA and kernel-bypass. In this section, we provide an
overview of RDMA features and terminology that are used in
the rest of this paper.

2.2.1 Comparison with classical Ethernet

To distinguish from RoCE, we refer to non-RDMA providing
Ethernet networks as “classical Ethernet.” Unlike classical
Ethernet NICs, RDMA NICs (RNICs) provide reliable deliv-
ery to applications by employing hardware-based retransmis-
sion of lost packets. Further, RNICs provide kernel bypass
for all communication. These two factors reduce end-to-end
latency as well as the CPU load on the communicating hosts.
The typical end-to-end (1

2 RTT) latency in InfiniBand/RoCE
is 1 µs while that in modern classical Ethernet-based solu-
tions [2, 18] is 10 µs. A large portion of this gap arises
because of differing emphasis in the NIC design. RDMA
is increasing its presence in datacenters as the hardware be-
comes cheaper [21]. A 40 Gbps ConnectX-3 RNIC from
Mellanox costs about $500, while a 10 Gbps Ethernet adapter
costs between $300 and $800. The introduction of RoCE
will further boost RDMA’s presence as it will allow sockets
applications to run with RDMA applications on the same
network.

2.2.2 Verbs and queue pairs

Userspace programs access RNICs directly using functions
called verbs. There are several types of verbs. Those most
relevant to this work are RDMA read (READ), RDMA write
(WRITE), SEND, and RECEIVE. Verbs are posted by ap-
plications to queues that are maintained inside the RNIC.
Queues always exist in pairs: a send queue and a receive
queue form a queue pair (QP). Each queue pair has an asso-
ciated completion queue (CQ), which the RNIC fills in upon
completion of verb execution.

The verbs form a semantic definition of the interface pro-
vided by the RNIC. There are two types of verbs semantics:
memory semantics and channel semantics.

Memory semantics: The RDMA verbs (READ and
WRITE) have memory semantics: they specify the remote
memory address to operate upon. These verbs are one-sided:
the responder’s CPU is unaware of the operation. This lack of
CPU overhead at the responder makes one-sided verbs attrac-
tive. Furthermore, they have the lowest latency and highest
throughput among all verbs.

Channel semantics: SEND and RECEIVE (RECV) have
channel semantics, i.e., the SEND’s payload is written to a
remote memory address that is specified by the responder
in a pre-posted RECV. An analogy for this would be an
unbuffered sockets implementation that required read() to
be called before the packet arrived. SEND and RECV are
two-sided as the CPU at the responder needs to post a RECV
in order for an incoming SEND to be processed. Unlike the
memory verbs, the responder’s CPU is involved. Two-sided
verbs also have slightly higher latency and lower throughput
than one sided verbs and have been regarded unfavorably for
designing key-value systems [21, 8].

Although SEND and RECV verbs are technically RDMA
verbs, we distinguish them from READ and WRITE. We

refer to READ and WRITE as RDMA verbs, and refer to
SEND and RECV as messaging verbs.

Verbs are usually posted to the send queue of a QP (except
RECV, which is posted to the receive queue). To post a verb to
the RNIC, an application calls into the userland RDMA driver.
Then, the driver prepares a Work Queue Element (WQE) in
the host’s memory and rings a doorbell on the RNIC via
Programmed IO (PIO). For ConnectX and newer RNICs, the
doorbell contains the entire WQE [27]. For WRITE and
SEND verbs, the WQE is associated with a payload that
needs to be sent to the remote host. A payload up to the
maximum PIO size (256 in our setup) can be inlined in the
WQE, otherwise it can be fetched by the RNIC via a DMA
read. An inlined post involves no DMA operations, reducing
latency and increasing throughput for small payloads.

When the RNIC completes the network steps associated
with the verb, it pushes a completion event to the queue
pair’s associated completion queue (CQ) via a DMA write.
Using completion events adds extra overhead to the RNIC’s
PCIe bus. This overhead can be reduced by using selective
signaling. When using a selectively signaled send queue of
size S, up to S−1 consecutive verbs can be unsignaled, i.e.,
a completion event will not be pushed for these verbs. The
receive queue cannot be selectively signaled. As S is large (∼
128), we use the terms “selective signaling” and “unsignaled”
interchangeably.

2.2.3 Transport types

RDMA transports can be connected or unconnected. A con-
nected transport requires a connection between two queue
pairs that communicate exclusively with each other. Current
RDMA implementations support two main types of connected
transports: Reliable Connection (RC) and Unreliable Connec-
tion (UC). There is no acknowledgement of packet reception
in UC; packets can be lost and the affected message can be
dropped. As UC does not generate ACK/NAK packets, it
causes less network traffic than RC.

In an unconnected transport, one queue pair can communi-
cate with any number of other queue pairs. Current implemen-
tations provide only one unconnected transport: Unreliable
Datagram (UD). The RNIC maintains state for each active
queue in its queue pair context cache, so datagram transport
can scale better for applications with a one-to-many topology.

InfiniBand and RoCE employ lossless link-level flow con-
trol, namely, credit-based flow control and Priority Flow Con-
trol. Even with unreliable transports (UC/UD), packets are
never lost due to buffer overflows. Reasons for packet loss
include bit errors on the wire and hardware failures, which
are extremely rare. Therefore, our design, similar to choices
made by Facebook and others [22], sacrifices transport-level
retransmission for fast common case performance at the cost
of rare application-level retries.

Some transport types support only a subset of the available
verbs. Table 1 lists the verbs supported by each transport

Verb RC UC UD

SEND/RECV 3 3 3
WRITE 3 3 7
READ 3 7 7

Table 1: Operations supported by each connection type. UC
does not support READs, and UD does not support RDMA at all.

T
im

e

CPU RNIC RNIC CPU

WRITE

WRITE, INLINED,
UNREALIABLE,
UNSIGNALLED

READ

SEND/RECV

1

Figure 1: Steps involved in posting verbs. The dotted arrows are
PCIe PIO operations. The solid, straight arrows are DMA operations:
the thin ones are for writing the completion events. The thick wavy
arrows are RDMA data packets and the thin ones are ACKs.

type. Figure 1 shows the DMA and network steps involved in
posting verbs.

2.3 Existing RDMA-based key-value stores

Pilaf [21] is a key-value store that aims for high performance
and low CPU use. For GETs, clients access a cuckoo hash
table at the server using READs, which requires 2.6 round
trips on average for single GET request. For PUTs, clients
send their requests to the server using a SEND message. To
ensure consistent GETs in the presence of concurrent PUTs,
Pilaf’s data structures are self-verifying: each hash table entry
is augmented with two 64-bit checksums.

The second key-value store we compare against is based
upon the store designed in FaRM [8]. It is important to note
that FaRM is a more general-purpose distributed computing
platform that exposes memory of a cluster of machines as a
shared address space; we compare only against a key-value
store implemented on top of FaRM that we call FaRM-KV.
Unlike the client-server design in Pilaf and HERD, FaRM is
symmetric, befitting its design as a cluster architecture: each
machine acts as both a server and client.

FaRM’s design provides two components for comparison.
First is its key-value store design, which uses a variant of
Hopscotch hashing [12] to create a locality-aware hash table.
For GETs, clients READ several consecutive Hopscotch slots,
one of which contains the key with high probability. Another
READ is required to fetch the value if it is not stored inside
the hash table. For PUTs, clients WRITE their request to a
circular buffer in the server’s memory. The server polls this
buffer to detect new requests. This design is not specific to
FaRM—we use it merely as an extant alternative to Pilaf’s
Cuckoo-based design to provide a more in-depth comparison
for HERD.

The second important aspect of FaRM is its symmetry;
here it differs from both Pilaf and HERD. For small, fixed-
size key-value pairs, FaRM can “inline” the value with the
key. With inlining, FaRM’s RDMA read-based design still
achieves lower maximum throughput than HERD, but it uses
less CPU. This tradeoff may be right for a cluster where
all machines are also busy doing computation; we do not
evaluate the symmetric use case here, but it is an important
consideration for users of either design.

3. DESIGN DECISIONS

Towards our goal of supporting key-value servers that achieve
the highest possible throughput with RDMA, we explain in
this section the reasons we choose to use—and not use—
particular RDMA features and other design options. To begin
with, we present an analysis of the performance of the RDMA
verbs; we then craft a communication architecture using the
fastest among them that can support our application needs.

As hinted in Section 1, one of the core decisions to make is
whether to use memory verbs (RDMA read and write) or mes-
saging verbs (SEND and RECV). Recent work from the sys-
tems and networking communities, for example, has focused
on RDMA reads as a building block, because they bypass
the remote network stack and CPU entirely for GETs [21, 8].
In contrast, however, the HPC community has made wider
use of messaging, both for key-value caches [14] and general
communication [16]. These latter systems scaled to thousands
of machines, but provided low throughput—less than one mil-
lion operations per second in memcached [14]. The reason for
low throughput in [14] is not clear, but we suspect application
design that makes the system incapable of leveraging the full
power of the RNICs.

There remains an important gap between these two lines
of work, and to our knowledge, HERD is the first system to
provide the best of both worlds: throughput even higher than
that of the RDMA-based systems while scaling to several
hundred clients.

HERD takes a hybrid approach, using both RDMA and
messaging to best effect. RDMA reads, however, are unattrac-
tive because of the need for multiple round trips. In HERD,
clients instead write their requests to the server using RDMA
writes over an Unreliable Connection (UC). This write places

Name Nodes Hardware

Apt 187 Intel Xeon E5-2450 CPUs. ConnectX-3
MX354A (56 Gbps IB) via PCIe 3.0 x8

Susitna 36 AMD Opteron 6272 CPUs. CX-3
MX353A (40 Gbps IB) and CX-3 MX313A
(40 Gbps RoCE) via PCIe 2.0 x8

Table 2: Cluster configuration

the PUT or GET request into a per-client memory region in
the server. The server polls these regions for new requests.
Upon receiving one, the server process executes in conven-
tional fashion using its local data structures. It then sends a
reply to the client using messaging verbs: a SEND over an
Unreliable Datagram.

To explain why we use this hybrid of RDMA and messag-
ing, we describe the performance experiments and analysis
that support it. Particularly, we describe why we prefer using
RDMA writes instead of reads, not taking advantage of hard-
ware retransmission by opting for unreliable transports, and
using messaging verbs despite conventional wisdom that they
are slower than RDMA.

3.1 Notation and experimental setup
In the rest of this paper, we refer to an RDMA read as READ
and to an RDMA write as WRITE. In this section, we present
microbenchmarks from Emulab’s [29] Apt cluster, a large,
modern testbed equipped with 56 Gbps InfiniBand. Because
Apt has only InfiniBand, in Section 5, we also use the NSF
PRObE’s [11] Susitna cluster to evaluate on RoCE. The hard-
ware configurations of these clusters are shown in Table 2.

These experiments use one server machine and several
client machines. We denote the server machine by MS and
its RNIC by RNICS. Client machine i is denoted by Ci. The
server and client machines may run multiple server and client
processes respectively. We call a message from client to
server a request, and the reply from server to client, a response.
The host issuing a verb is the requester and the destination
host responder. For unsignaled SEND and WRITE over UC,
the destination host does not actually send a response, but we
still call it a responder.

For throughput experiments, processes maintain a window
of several outstanding verbs in their send queues. Using win-
dows allows us to saturate our RNICs with fewer processes.
In all of our throughput experiments, we manually tune the
window size for maximum aggregate throughput.

3.2 Using WRITE instead of READ
There are several benefits to using WRITE instead of READ.
WRITEs can be performed over the UC transport, which it-
self confers several performance advantages. Because the
responder does not need to send packets back, its RNIC per-

forms less processing, and thus can support higher throughput
than with READs. The reduced network bandwidth similarly
benefits both the server and client throughput. Finally, as
one might expect, the latency of an unsignaled WRITE is
about half that (1

2 RTT) of a READ. This makes it possible
to replace one READ by two WRITEs, one client-to-server
and one server-to-client (forming an application-level request-
reply pair), without increasing latency significantly.

3.2.1 WRITEs have lower latency than READs

Measuring the latency of an unsignaled WRITE is not straight-
forward as the requester gets no indication of completion.
Therefore, we measure it indirectly by measuring the latency
of an ECHO. In an ECHO, a client transmits a message to
a server and the server relays the same message back to the
client. If the ECHO is realized by using unsignaled WRITEs,
the latency of an unsignaled WRITE is at most one half of
the ECHO’s latency.

We also measure the latency of signaled READ and
WRITE operations. As these operations are signaled, we
use the completion event to measure latency. For WRITE, we
also measure the latency with payload inlining.

Figure 2 shows the average latency from these measure-
ments. We use inlined and unsignaled WRITEs for ECHOs.
On our RNICs, the maximum size of the inlined payload is
256 bytes. Therefore, the graphs for WR-INLINE and ECHO
are only shown up to 256 bytes.

Unsignaled verbs: For payloads up to 64 bytes, the latency
of ECHOs is close to READ latency, which confirms that the
one-way WRITE latency is about half of the READ latency.
For larger ECHOs, the latency increases because of the time
spent in writing to the RNIC via PIO.

Signaled verbs: The solid lines in Figure 2 show the laten-
cies for three signaled verbs—WRITE, READ, and WRITE
with inlining (WR-INLINE). The latencies for READ and
WRITE are similar because the length of the network/PCIe
path travelled is identical. By avoiding one DMA operation,
inlining reduces the latency of small WRITEs significantly.

3.2.2 WRITEs have higher throughput than
READs

To evaluate throughput, it is first necessary to observe that
with many client machines communicating with one server,
different verbs perform very differently when used at the
clients (talking to one server) and at the server (talking to
many clients).

Inbound throughput: First, we measured the throughput
for inbound verbs, i.e., the number of verbs that multiple
remote machines (the clients) can issue to one machine (the
server). Using the notation introduced above, C1, ...,CN issue
operations to MS as shown in Figure 3a. Figure 3b shows
the cumulative throughput observed across the active ma-
chines. For up to 128 byte payloads, WRITEs achieve 35
Mops, which is about 34% higher higher than the maximum

Core 1

Core 16

MS

Core 1

Core 16

C1

{RD,WR,WR-I}, RC

WR-I, RC (ECHO)

1

(a) Setup for measuring verbs and ECHO latency. We use one
client process to issue operations to one server process

 0

 1

 2

 3

 4

 4 8 16 32 64 128 256 512 1024

L
at

en
cy

 (
m

ic
ro

se
co

n
d

s)

Size of payload (bytes)

WR-INLINE

WRITE

READ

ECHO

ECHO / 2

(b) The one-way latency of WRITE is half of the ECHO latency.
ECHO operations used unsignaled verbs.

Figure 2: Latency of verbs and ECHO operations

READ throughput (26 Mops). Interestingly, reliable WRITEs
deliver significantly higher throughput than READs despite
their identical InfiniBand path. This is explained as follows:
writes require less state maintainance both at the RDMA and
the PCIe level because the initiator does not need to wait for
a response. For reads, however, the request must be main-
tained in the initiator’s memory till a response arrives. At
the RDMA level, each queue pair can only service a few out-
standing READ requests (16 in our RNICs). Similarly, at the
PCIe level, reads are performed using non-posted transactions,
whereas writes use cheaper, posted transactions.

Although the inbound throughput of WRITEs over UC and
RC is nearly identical, using UC is still beneficial: It requires
less processing at RNICS, and HERD uses this saved capacity
to SEND responses.

Outbound throughput: We next measured the throughput
for outbound verbs. Here, MS issues operations to C1, ...,CN .
As shown in Figure 4a, there are N processes on MS; the ith

process communicates with Ci only (the scalability problems
associated with all-to-all communication are explained in Sec-
tion 3.3). Apart from READs, WRITEs, and inlined WRITEs
over UC, we also measure the throughput for inlined SENDs
over UD for reasons outlined in Section 3.3. Figure 4b plots
the throughput achieved by MS for different payload sizes.
For small sizes, inlined WRITEs and SENDs have signifi-
cantly higher outbound throughput than READs. For large
sizes, the throughput of all WRITE and SEND variants is less
than for READs, but it is never less than 50% of the READ
throughput. Thus, even for these larger items, using a single
WRITE (or SEND) for responses remains a better choice than
using multiple READs for key-value items.

Core 1

Core N

Core 16

MS

Core 1

Core 16

C1

{RD,WR}, RC

or WR, UC

from CN

1

(a) Setup for measuring inbound throughput. Each
client process communicates with only one server pro-
cess

 0

 10

 20

 30

 40

 4 8 16 32 64 128 256 512 1024

T
h

ro
u

g
h

p
u

t
(M

o
p

s)

Size of payload (bytes)

WRITE-UC

READ-RC

WRITE-RC

(b) For moderately sized payloads, WRITE has much higher in-
bound throughput than READs.

Figure 3: Comparison of inbound verbs throughput

Core 1

Core N

Core 16

MS

Core 1

Core 16

C1

RD, RC or SEND, UD

or {WR-I, WR}, UC

to CN

1

(a) Setup for measuring outbound throughput. Each
server process communicates with only one client pro-
cess.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 64 128 192 256

T
h
ro

u
g
h
p
u
t

(M
o
p
s)

Size of payload (bytes)

WR-UC-INLINE

SEND-UD

WRITE-UC

READ-RC

(b) For small payloads, WRITE with inlining has a higher out-
bound throughput than READ.

Figure 4: Comparison of outbound verbs throughput

ECHO throughput is interesting for two reasons. First,
it provides an upper bound on the throughput of a key-value
cache based on one round trip of communication. Second,
ECHOs help characterize the processing power of the RNIC:
although the advertised message rate of ConnectX-3 cards
is 35 Mops, bidirectionally, they can process many more
messages.

 0

 5

 10

 15

 20

 25

SEND / SEND WR / WR WR / SENDT
h

ro
u

g
h

p
u

t
(M

il
li

o
n

 E
C

H
O

s/
s)

basic
+unreliable

+unsignalled
+inlined

Figure 5: Throughput of ECHOs with 32 byte messages. In WR-
SEND, the response is sent over UD.

An ECHO consists of a request message and a response
message. Varying the verbs and transport types yield sev-
eral different implementations of ECHO. Figure 5 shows the
throughput for some of the possible combinations and for 32
byte payloads. The figure also shows that using inlinining, se-
lective signaling, and UC transport increases the performance
significantly.

ECHOs achieve maximum throughput (26 Mops) when
both the request and the response are done as RDMA writes.
However, as shown in Section 3.3, this approach does not
scale with the number of connections. HERD uses RDMA
writes (over UC) for requests and SENDs (over UD) for
responses. An ECHO server using this hybrid also achieves
26 Mops—it gives the performance of WRITE-based ECHOs,
but with much better scalability.

By avoiding the overhead of posting RECVs at the server,
our method of WRITE based requests and SEND-based re-
sponses provides better throughput than purely SEND-based
ECHOs. Interestingly, however, after enabling all optimiza-
tions, the throughput of purely SEND-based ECHOs (with
no RDMA operations) is 21 Mops, which is more than three-
fourths of the peak inbound READ throughput (26 Mops).
Both Pilaf and FaRM have noted that RDMA reads vastly out-
perform SEND-based ECHOs, which our results agree with
if our optimizations are removed. With these optimizations,
however, SENDs significantly outperform READs in cases
where a single SEND-based ECHO can be used in place of
multiple READs per request.

Our experiments show that several ECHO designs, with
varying degrees of scalability, can perform better than
multiple-READ designs. From a network-centric perspec-
tive, this is fortunate: it also means that designs that use
only one cross-datacenter RTT can potentially outperform
multiple-RTT designs both in throughput and in latency.

Discussion of verbs throughput: The ConnectX-3 card is
advertised to support 35 million messages per second. Our ex-
periments show that the card can achieve this rate for inbound
WRITEs (Figure 3b) and slightly exceed it for very small out-
bound WRITEs (Figure 4b). All other verbs are slower than
30 Mops regardless of operation size. While the manufacturer
does not specify bidirectional message throughput, we know

empirically that RNICS can service 30 million ECHOs per
second (WRITE-based ECHOs achieve 30 Mops with 16 byte
payloads; Figure 5 uses 32 byte payloads), or at least 60 total
Mops of inbound WRITEs and outbound SENDs.

The reduced throughputs can be attributed to several fac-
tors:

• For outbound WRITEs larger than 28 bytes, the RNIC’s
message rate is limited by the PCIe PIO throughput. The
sharp decreases in the WR-UC-INLINE and SEND-UD
graphs in Figure 4b at 64 byte intervals are explained by
the use of write-combining buffers for PIO acceleration.
With the write-combining optimization, the unit of PIO
writes is a cache line instead of a word. Due to the larger
datagram header, the throughput for SEND-UD drops
for smaller payload sizes than for WRITEs

• The maximum throughput for inbound and outbound
READs is 26 Mops and 22 Mops respectively, which is
considerably smaller than the advertised 35 Mops mes-
sage rate. Unlike WRITEs, READs are bottlenecked by
the RNIC’s processing power. This is as expected. Out-
bound READs involve a PIO operation, a packet trans-
mission, a packet reception, and a DMA write, whereas
outbound WRITEs (inlined and over UC) avoid the last
two steps. Inbound READs require a DMA read by
the RNIC followed by a packet transmission, whereas
inbound WRITEs only require a DMA write.

3.3 Using UD for responses

Our previous experiments did not show that as the number
of connections increases, connected transports begin to slow
down. To reduce hardware cost, power consumption, and
design complexity, RNICs have very little on-chip memory
(SRAM) to cache address translation tables and queue pair
contexts [26]. A miss in this cache requires a PCIe transaction
to fetch the data from host memory. When the communication
fan-in or fan-out exceeds the capacity of this cache, perfor-
mance begins to suffer. This is a potentially important effect
to avoid both for cluster scaling, but also because it interacts
with the cache or store architectural decisions. For exam-
ple, the cache design we build on in HERD partitions the
keyspace between several server processes in order to achieve
efficient CPU and memory utilization. Such partitioning fur-
ther increases the fan-in and fan out of connections to a single
machine.

To evaluate this effect, we modified our throughput experi-
ments to enable all-to-all communication. We use N client
processes (one process each at C1, ...,CN) and N server pro-
cesses at MS. For measuring inbound throughput, client pro-
cesses select a server process at random and issue a WRITE to
it. For outbound throughput, a server process selects a client
at random and issues a WRITE to it. The results of these
experiments for 32 byte messages are presented in Figure 6.
Several results stand out:

Outbound WRITEs scale poorly: for N = 16, there are
256 active queue pairs at RNICS and the server-to-clients
throughput degrades to 21% of the maximum outbound
WRITE throughput (Figure 4b). With many active queue
pairs, each posted verb can cause a cache miss, severely de-
grading performance.

Inbound WRITEs scale well: Clients-to-server through-
put is high even for N = 16. The reason for this is that
queueing of outstanding verbs operations is performed at the
requesting RNIC and very little state is maintained at the re-
sponding RNIC. Therefore, the responding RNIC can support
a much larger number of active queue pairs without incurring
cache misses. The higher requester overhead is amortized
because the clients outnumber the server.

In a different experiment, we used 1600 client processes
spread over 16 machines to issue WRITEs over UC to one
server process. HERD uses this many-to-one configuration to
reduce the number of active connections at the server (Sec-
tion 4.2). This configuration also achieves 30 Mops.

Outbound WRITEs scale poorly only because RNICS must
manage many connected queue pairs. This problem cannot
be solved if we use connected transports (RC/UC/XRC) be-
cause they require at least as many queue pairs at MS as the
number of client machines. Scaling outbound communication
therefore mandates using datagrams. UD transport supports
one-to-many communication, i.e., a single UD queue can be
used to issue operations to multiple remote UD queues. The
main problem with using UD in a high performance applica-
tion is that it only supports messaging verbs and not RDMA
verbs.

Fortunately, messaging verbs only impose high overhead
at the receiver. Senders can directly transmit their requests;
only the receiver must pre-post a RECV before the SEND can
be handled. For the sender, the work done to issue a SEND is
identical to that required to post a WRITE. Figure 6 shows
that, when performed over Unreliable Datagram transport,
SEND side throughput is high and scales well with the number
of connected clients.

The slight degradation of SEND throughput beyond 10
connected clients happens because the SENDs are unsignaled,
i.e., server processes get no indication of verb completion.
This leads to the server processes overwhelming RNICS with
too many outstanding operations, causing cache misses inside
the RNIC. As HERD uses SENDs for responding to requests,
it can use new requests as an indication of the completion of
old SENDs, thereby avoiding this problem.

4. DESIGN OF HERD

To evaluate whether these network-driven architectural de-
cisions work for a real key-value application, we designed
and implemented an RDMA-based KV cache, called HERD,
based upon recent high-performance key-value designs. Our
HERD setup consists of one server machine and several client
machines. The server machine runs NS server processes. NC

 0

 5

 10

 15

 20

 25

 30

 35

 0 4 8 12 16

T
h
ro

u
g
h
p
u
t

(M
o
p
s)

Number of client processes (= number of server processes)

In-WRITE-UC
Out-WRITE-UC

Out-SEND-UD

Figure 6: Comparison of UD and UC for all-to-all communi-
cation with 32 byte payloads. Inbound WRITEs over UC and
outbound SENDs over UD scale well up to 256 queue pairs. Out-
bound WRITEs over UC scale poorly. All operations are inlined and
unsignaled.

client processes are uniformly spread across the client ma-
chines.

4.1 Key-Value cache
The fundamental goal of this work is to evaluate our network-
ing and architectural decisions in the context of key-value
systems. We do not focus on building better back-end key-
value data structures but rather borrow existing designs from
MICA [18].

MICA is a near line-rate key-value cache and store for
classical Ethernet. We restrict our discussion of MICA to its
cache mode. MICA uses a lossy index to map keys to pointers,
and stores the actual values in a circular log. On insertion,
items can be evicted from the index (thereby making the index
lossy), or from the log in a FIFO order. In HERD, each server
process creates an index for 64 Mi keys, and a 4 GB circular
log. We use MICA’s algorithm for both GETs and PUTs: each
GET requires up to two random memory lookups, and each
PUT requires one.

MICA shards the key space into several partitions based
on a keyhash. In its “EREW” mode, each server core has
exclusive read and write access to one partition. MICA uses
the Flow Director [3] feature of modern Ethernet NICs to
direct request packets to the core responsible for the given
key. HERD achieves the same effect by allocating per-core
request memory at the server, and allowing clients to WRITE
their requests directly to the appropriate core.

4.1.1 Masking DRAM latency with prefetching

To service a GET, a HERD server must perform two random
memory lookups, prepare the SEND response (with the key’s
value inlined in the WQE), and then post the SEND verb using
the post send() function. The memory lookups and the
post send() function are the two main sources of latency
at the server. Each random memory access takes 60-120 ns
and the post send() function takes about 150 ns. While
the latter is unavoidable, we can mask the memory access

 0

 5

 10

 15

 20

 25

 1 2 3 4 5

T
h
ro

u
g
h
p
u
t

(M
o
p
s)

Number of CPU cores

N = 2, no prefetch

N = 2, prefetch

N = 8, no prefetch

N = 8, prefetch

Figure 7: Effect of prefetching on throughput

latency by overlapping memory accesses of one request with
computation of another request.

MICA and CuckooSwitch [18, 31] mask latency by over-
lapping memory fetches and prefetches, or request decoding
and prefetches. HERD takes a different approach: we overlap
prefetches with the post send() function used to trans-
mit replies. To process multiple requests simultaneously in
the absence of a driver that itself handles batches of pack-
ets [2, 18, 31]), HERD creates a pipeline of requests at the
application level.

In HERD, the maximum number of memory lookups for
each request is two. Therefore, we create a request pipeline
with two stages. When a request is in stage i of the pipeline,
it performs the i-th memory access for the request and is-
sues a prefetch for the next memory address. In this way,
requests only access memory for which a prefetch has already
been issued. On detecting a new request, the server issues
a prefetch for the request’s index bucket, advances the old
requests in the pipeline, pushes in the new request, and fi-
nally calls post send() to SEND a reply for the pipeline’s
completed request. The server process expects the issued
prefetches to finish by the time post send() returns.

Figure 7 shows the effectiveness of prefetching. We use a
WRITE/SEND-based ECHO server but this time the server
performs N random memory accesses before sending the
response. Prefetching allows fewer cores to deliver higher
throughput: 5 cores can deliver the peak throughput even
with N = 8. We conclude that there is significant headroom
to implement more complex key-value applications, for in-
stance, key-value stores, on top of HERD’s request-reply
communication mechanism.

With a large number of server processes, this pipelining
scheme can lead to a deadlock. A server does not advance its
pipeline until it receives a new request, and a client does not
advance its request window until it gets a response. We avoid
this deadlock as follows. While polling for new requests, if a
server fails for 100 iterations consecutively, it pushes a no-op
into the pipeline.

4.2 Requests
Clients WRITE their GET and PUT requests to a contiguous
memory region on the server machine which is allocated dur-

Core 1 Core 2 Core NS

Client 1 Client NC

1 2 W

VALUE LEN KEY

1

Figure 8: Layout of the request region at the server

ing initialization. This memory region is called the request
region and is shared among all the server processes by map-
ping it using shmget(). The request region is logically
divided into 1 KB slots (the maximum size of a key-value
item in HERD is 1 KB).

Requests are formatted as follows. A GET request consists
only of a 16-byte keyhash. A PUT request contains a 16-
byte keyhash, a 2-byte LEN field (specifying the value’s
length), and up to 1000 bytes for the value. To poll for
incoming requests, we use the left-to-right ordering of the
RNIC’s DMA writes [16, 8]. We use the keyhash field to poll
for new requests; therefore, the key is written to the rightmost
16 bytes of the 1 KB slot. A non-zero keyhash indicates a
new request, so we do not allow the clients to use a zero
keyhash. The server zeroes out the keyhash field of the slot
after sending a response, freeing it up for a new request.

Figure 8 shows the layout of the request region at the
server machine. It consists of separate chunks for each server
process which are further sub-divided into per-client chunks.
Each per-client chunk consists of W slots, i.e., each client
can have up to W pending requests to each server process.
The size of the request region is NS ·NC ·W KB. With NC
= 200, NS = 16 and W = 2, this is approximately 6 MB
and fits inside the server’s L3 cache. Each server process
polls the per-client chunks for new requests in a round robin
fashion. If server process s has seen r requests from client
number c, it polls the request region at the request slot number
s · (W ·Nc)+(c ·W)+ r mod W .

A network configuration using bidirectional, all-to-all, com-
munication with connected transports would require NC ·NS
queue pairs at the server. HERD, however, uses connected
transports for only the request side of communication, and
thus requires only NC connected queue pairs. The configu-
ration works as follows. An initializer process creates the
request region, registers it with RNICS, establishes a UC con-
nection with each client, and goes to sleep. The NS server
processes then map the request region into their address space
via shmget() and do not create any connections for receiv-
ing requests.

4.3 Responses
In HERD, responses are sent as SENDs over UD. Each client
creates NS UD queue pairs (QPs) whereas each server pro-
cess uses only one UD QP. Before writing a new request to
server process s, a client posts a RECV to its s-th UD QP.
This RECV specifies the memory area on the client where the
server’s response will be written. Each client allocates a re-
sponse region containing W ·NS response slots: this region is
used for the target addresses in the RECVs. After writing out
W requests, the client starts checking for responses by polling
for RECV completions. On each successful completion, it
posts another request.

The design outlined thus far deliberately shifts work from
the server’s RNIC to the client’s, with the assumption that
client machines often perform enough other work that sat-
urating 40 or 56 gigabits of network bandwidth is not their
primary concern. The servers, however, in an application such
as Memcached, are often dedicated machines, and achieving
high bandwidth is important.

5. EVALUATION

We evaluate HERD on two clusters: Apt and Susitna (Table 2).
Due to limited space, we restrict our discussion to Apt and
only present graphs for RoCE on Susitna. A detailed discus-
sion of our results on Susitna may be found in [15]. Although
Susitna uses similar RNICs as Apt, the slower PCIe 2.0 bus
reduces the throughput of all compared systems. Despite this,
our results on Susitna remain interesting: just as ConnectX-3
cards overwhelm PCIe 2.0 x8, we expect the next-generation
Connect-IB cards to overwhelm PCIe 3.0 x16. Our evaluation
shows that:

• HERD uses the full processing power of the RNIC. A
single HERD server can process up to 26 million re-
quests per second. For value size up to 60 bytes, HERD’s
request throughput is greater than native READ through-
put and is much greater than that of READ-based key-
value services: it is over 2X higher than FaRM-KV and
Pilaf.

• HERD delivers up to 26 Mops with approximately 5 µs
average latency. Its latency is over 2X lower than Pilaf
and FaRM-KV at their peak throughput respectively.

• HERD scales to the moderately sized Apt cluster, sus-
taining peak throughput with over 250 connected client
processes.

We conclude the evaluation by examining the seeming
drawback of the HERD design relative to READ-based
designs—its higher server CPU use—and put this in context
with the total (client + server) CPU required by all systems.

5.1 Experimental setup
We run all our throughput and latency experiments on 18
machines in Apt. The 17 client machines run up to 3 client

processes each. With at most 4 outstanding requests per client,
our implementation requires at least 36 client processes to
saturate the server’s throughput. We over-provision slightly
by using 51 client processes. The server machine runs 6
server processes, each pinned to a distinct physical core. The
machine configuration is described in Table 2. The machines
run Ubuntu 12.04 with Mellanox’s OFED v2.2 stack.

Comparison against stripped-down alternatives: In
keeping with our focus on understanding the effects of
network-related decisions, we compare our (full) HERD im-
plementation against simplified implementations of Pilaf and
FaRM-KV. These simplified implementations use the same
communication methods as the originals, but omit the actual
key-value storage, instead returning a result instantly. We
made this decision for two reasons. First, while working
with Pilaf’s code, we observed several optimization oppor-
tunities; we did not want our evaluation to depend on the
relative performance tuning of the systems. Second, we did
not have access to the FaRM source code, and we could not
run Windows Server on our cluster. Instead, we created and
evaluated emulated versions of the two systems which do not
include their backing data structures. This approach gives
these systems the maximum performance advantage possible,
so the throughput we report for both Pilaf and FaRM-KV may
be higher than is actually achievable by those systems.

Pilaf is based on 2-level lookups: a hash-table maps keys
to pointers. The pointer is used to find the value associated
with the key from flat memory regions called extents. FaRM-
KV, in its default operating mode, uses single-level lookups.
It achieves this by inlining the value in the hash-table. It
also has a two-level mode, where the value is stored “out-
of-table.” Because the out-of-table mode is necessary for
memory efficiency with variable length keys, we compare
HERD against both modes. In the following two subsections,
we denote the size of a key, value, and pointer by SK , SV , and
SP respectively.

5.1.1 Emulating Pilaf

In K-B cuckoo hashing, every key can be found in K different
buckets, determined by K orthogonal hash functions. For
associativity, each bucket contains B slots. Pilaf uses 3-1
cuckoo hashing with 75% memory efficiency and 1.6 average
probes per GET (higher memory efficiency with fewer, but
slightly larger, average probes is possible with 2-4 cuckoo
hashing [9]). When reading the hash index via RDMA, the
smallest unit that must be read is a bucket. A bucket in Pilaf
has only one slot that contains a 4 byte pointer, two 8 byte
checksums, and a few other fields. We assume the bucket size
in Pilaf to be 32 bytes for alignment.
GET: A GET in Pilaf consists of 1.6 bucket READs (on

average) to find the value pointer, followed by a SV byte
READ to fetch the value. It is possible to reduce Pilaf’s
latency by issuing concurrent READs for both cuckoo buckets.
As this comes at the cost of decreased throughput, we wait

for the first READ to complete and issue the second READ
only if it is required.
PUT: For a PUT, a client SENDs a SK +SV byte message

containing the new key-value item to the server. This re-
quest may require relocating entries in the cuckoo hash-table,
but we ignore that as our evaluation focuses on the network
communication only.

In emulating Pilaf, we enable all of our RDMA optimiza-
tions for both request types; we call the resulting system
Pilaf-em-OPT.

5.1.2 Emulating FaRM-KV

FaRM-KV uses a variant of Hopscotch hashing to locate a
key in approximately one READ. Its algorithm guarantees
that a key-value pair is stored in a small neighborhood of the
bucket that the key hashes to. The size of the neighborhood
is tunable, but its authors set it to 6 to balance good space
utilization and performance for items smaller than 128 bytes.
FaRM-KV can inline the values in the buckets, or it can store
them separately and only store pointers in the buckets. We call
our version of FaRM-KV with inlined values FaRM-em and
without inlining FaRM-em-VAR (for variable length values).
GET: A GET in FaRM-em requires a 6 * (SK + SV) byte

READ. In FaRM-em-VAR, a GET requires a 6 * (SK +SP)
byte READ followed by a SV byte READ.
PUT: FaRM-KV handles PUTs by sending messages to the

server via WRITEs, similar to HERD. The server notifies the
client of PUT completion using another WRITE. Therefore,
a PUT in FaRM-em (and FaRM-em-VAR) consists of one
SK + SV byte WRITE from a client to the server, and one
WRITE from the server to the client. For higher throughput,
we perform these WRITEs over UC unlike the original FaRM
paper that used RC (Figure 5).

5.2 Workloads
Three main workload parameters affect the throughput and
latency of a key-value system: relative frequency of PUTs
and GETs, item size, and skew.

We use two types of workloads: read-intensive (95% GET,
5% PUT) and write-intensive (50% GET, 50% PUT). Our
workload can either be uniform or skewed. Under a uniform
workload, the keys are chosen uniformly at random from the
16 byte keyhash space. The skewed workload draws keys
from a Zipf distribution with parameter .99. This workload is
generated offline using YCSB [7]. We generated 480 million
keys once and assigned 8 million keys to each of the 51 client
processes.

5.3 Throughput comparison
We now compare the end-to-end throughput of HERD against
the emulated versions of Pilaf and FaRM.

Figure 9 plots the throughput of these system for read-
intensive and write-intensive workloads for 48-byte items

(SK = 16, SV = 32). We chose this item size because it is rep-
resentative of real-life workloads: an analysis of Facebook’s
general-purpose key-value store [6] showed that the 50-th
percentile of key sizes is approximately 30 bytes, and that of
value sizes is 20 bytes. To compare the READ-based GETs of
Pilaf and FaRM with Pilaf’s SEND/RECV-based PUTs, we
also plot the throughput when the workload consists of 100%
PUTs.

In HERD, both read-intensive and write-intensive work-
loads achieve 26 Mops, which is slightly larger than the
throughput of native RDMA reads of a similar size (Fig-
ure 3b). For small key-value items, there is very little dif-
ference between PUT and GET requests at the RDMA layer
because both types of requests fit inside one cacheline. There-
fore, the throughput does not depend on the workload compo-
sition.

The GET throughput of Pilaf-em-OPT and FaRM-em(-
VAR) is directly determined by the throughput of RDMA
READs. A GET in Pilaf-em-OPT involves 2.6 READs (on av-
erage). Its GET throughput is 9.9 Mops, which is about 2.6X
smaller than the maximum READ throughput. For GETs,
FaRM-em requires a single 288 byte READ and delivers 17.2
Mops. FaRM-em-VAR requires a second READ and has
throughput of 11.4 Mops for GETs.

Surprisingly, the PUT throughput in our emulated systems
is much larger than their GET throughput. This is explained
as follows. In FaRM-em(-VAR), PUTs use small WRITEs
over UC that outperform the large READs required for GETs.
Pilaf-em-OPT uses SEND/RECV-based requests and replies
for PUT. Both Pilaf and FaRM assume that messaging-based
ECHOs are much more expensive than READs. (Pilaf reports
that for 17 byte messages, the throughput of RDMA reads is
2.449 Mops whereas the throughput of SEND/RECV-based
ECHOs is only 0.668 Mops.) If SEND/RECV can provide
only one fourth the throughput of READ, it makes sense to
use multiple READs for GET.

However, we believe that these systems do not achieve
the full capacity of SEND/RECV. After optimizing SENDs
by using unreliable transport, payload inlining, and selective
signaling, SEND/RECV based ECHOs, as shown in Figure 5,
achieve 21 Mops, which is considerably more than half of our
READ throughput (26 Mops). Therefore, we conclude that
SEND/RECV-based communication, when used effectively,
is more efficient than using multiple READs per request.

Figure 10 shows the throughput of the three systems with
16 byte keys and different value sizes for a read-intensive
workload. For up to 60-byte items, HERD delivers over 26
Mops, which is slightly greater than the peak READ through-
put. Up to 32-byte values, FaRM-em also delivers high
throughput. However, its throughput declines quickly with
increasing value size because the size of FaRM-em’s READs
grow rapidly (as 6 * (SV +16)). This problem is fundamental
to the Hopscotch-based KV design which amplifies the READ
size to reduce round trips. FaRM-KV quickly saturates link
bandwidths (PCIe or InfiniBand/RoCE) with smaller items

 0

 5

 10

 15

 20

 25

 30

5% 50% 100% 5% 50% 100%

T
h
ro

u
g
h
p
u
t

(M
o
p
s)

PUT percentage

Pilaf-em-OPT

FaRM-em

FaRM-em-VAR

HERD

Apt-IB Susitna-RoCE

Figure 9: End-to-end throughput comparison for 48 byte key-
value items

 0

 5

 10

 15

 20

 25

 4 8 16 32 64 128 256 512 1024

T
h
ro

u
g
h
p
u
t

(M
o
p
s)

Value size

HERD

Pilaf-em-OPT

FaRM-em-VAR

FaRM-em

Apt-IB

 0

 5

 10

 15

 20

 4 8 16 32 64 128 256 512 1024

T
h
ro

u
g
h
p
u
t

(M
o
p
s)

Value size

HERD

Pilaf-em-OPT

FaRM-em-VAR

FaRM-em

Susitna-RoCE

Figure 10: End-to-end throughput comparison with different
value sizes

than HERD, which conserves network bandwidth by trans-
mitting only essential data. Figure 10 illustrates this effect.
FaRM-em saturates the PCIe 2.0 bandwidth on Susitna with
4 byte values, and the 56 Gbps InfiniBand bandwidth on Apt
with 32 byte values. HERD achieves high performance for
up to 32 byte values on Susitna, and 60 bytes values on Apt,
and is bottlenecked by the smaller PCIe PIO bandwidth.

With large values (144 bytes on Apt, 192 on Susitna),
HERD switches to using non-inlined SENDs for responses.
The outbound throughput of large inlined messages is less
than non-inlined messages because DMA outperforms PIO
for large payloads (Figure 4b). For large values, the perfor-
mance of HERD, FaRM-em, and Pilaf-em-OPT are within
10% of each other.

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25

L
at

en
cy

 (
u

s)

Throughput (Mops)

HERD

Pilaf-em-OPT

FaRM-em

FaRM-em-VAR

Apt-IB

Figure 11: End-to-end latency with 48 byte items and read-
intensive workload

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500

T
h
ro

u
g
h
p
u
t

(M
o
p
s)

Number of client processes

HERD, WS = 4
HERD, WS = 16

Figure 12: Throughput with variable number of client pro-
cesses and different window sizes

5.4 Latency comparison

Unlike FaRM-KV and Pilaf, HERD uses only one network
round trip for any request. FaRM-KV and Pilaf use one
round trip for PUT requests but require multiple round trips
for GETs (except when FaRM-KV inlines values in the hash-
table). This causes their GET latency to be higher than the
latency of a single RDMA READ.

Figure 11 compares the average latencies of the three sys-
tems for a read-intensive workload; the error bars indicate the
5th and 95th percentile latency. To understand the dependency
of latency on throughput, we increase the load on the server
by adding more clients until the server is saturated. When
using 6 CPU cores at the server, HERD is able to deliver 26
million requests per second with approximately 5 µs average
latency. For fixed-length key-value items, FaRM-em provides
the lowest latency among the three systems because it requires
only one network round trip (unlike Pilaf-em-OPT) and no
computation at the server (unlike HERD). For variable length
values, however, FaRM’s variable length mode requires two
RTTs, yielding worse latency than HERD.

The PUT latency for all three systems (not shown) is sim-
ilar because the network path traversed is the same. The
measured latency for HERD was slightly higher than that of
the emulated systems because it performed actual hash table
and memory manipulation for inserts, but this is an artifact of
the performance advantage we give Pilaf-em and FaRM-em.

5.5 Scalability

We conducted a larger experiment to understand HERD’s
number-of-clients scalability. We used one machine to run 6

server processes and the remaining 186 machines for client
processes. The experiment uses 16 byte keys and 32 byte
values.

Figure 12 shows the results from this experiment. HERD
delivers its maximum throughput for up to 260 client pro-
cesses. With even more clients, HERD’s throughput starts de-
creasing almost linearly. The rate of decrease can be reduced
by increasing the number of outstanding requests maintained
by each client, at the cost of higher request latency. Figure 12
shows the results for two window sizes: 4 (HERD’s default)
and 16. This observation suggests that the decline is due to
cache misses in RNICS, as more outstanding verbs in a queue
can reduce cache pressure. We expect this scalability limit to
be resolved with the introduction of Dynamically Connected
Transport in the new Connect-IB cards [1, 8],

Another likely scalability limit of our current HERD design
is the round-robin polling at the server for requests. With
thousands of clients, using WRITEs for inbound requests
may incur too much CPU overhead; mitigating this effect
may necessitate switching to a SEND/SEND architecture
over Unreliable Datagram transport. Figure 5 shows there
is a 4-5 Mops decrease to this change, but once made, the
system should scale up to many thousands of clients, while
still outperforming an RDMA READ-based architecture.1

We expect the performance of the SEND/SEND architecture
relative to WRITE-SEND to increase with the introduction
of inlined RECVs in Connect-IB cards. This will reduce the
load on RNICs by encapsulating the RECV payload in the
RECV completion.

5.6 HERD CPU Use
The primary drawback of not using READs in HERD is that
GET operations require the server CPU to execute requests,
in exchange for saving one cross-datacenter RTT. While at
first glance, it might seem that HERD’s CPU usage should
be higher than Pilaf and FaRM-KV, we show that in practice
these two systems also have significant sources of CPU usage
that reduce the extent of the difference.

First, issuing extra READs adds CPU overhead at the Pilaf
and FaRM-KV clients. To issue the second READ, the clients
must poll for the first READ to complete. HERD shifts
this overhead to the server’s CPU, making more room for
application processing at the clients.

Second, handling PUT requests requires CPU involvement
at the server. Achieving low-latency PUTs requires dedicating
server CPU cores that poll for incoming requests. Therefore,
the exact CPU use depends on the fraction of PUT throughput
that server is provisioned for, because this determines the CPU
resources that must be allocated to it, not the dynamic amount
actually used. For example, our experiments show that, even
ignoring the cost of updating data structures, provisioning for
100% PUT throughput in Pilaf and FaRM-KV requires over 5

1Figure 5 uses SENDs over UC, but we have verified that similar through-
put is possible using SENDs over UD.

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7

T
h
ro

u
g
h
p
u
t

(M
o
p
s)

Number of CPU cores

HERD

Pilaf-em-OPT (PUT)

FaRM-em (PUT)

Figure 13: Throughput as a function of server CPU cores

CPU cores. Figure 13 shows FaRM-em and Pilaf-em-OPT’s
PUT throughput for 48 byte key-value items and different
numbers of CPU cores at the server. Pilaf-em-OPT’s CPU
usage is higher because it must post RECVs for new PUT
requests, which is more expensive than FaRM-em’s request-
region polling.

In Figure 13, we also plot HERD’s throughput for the same
workload by varying the number of server CPU cores. HERD
is able to deliver over 95% of its maximum throughput with
5 CPU cores. The modest gap to FaRM-em arises because
the HERD server in this experiment is handling hash table
lookups and updates, whereas the emulated FaRM-KV is
handling only the network traffic.

We believe, therefore, that HERD’s higher throughput and
lower latency, along with the significant CPU utilization in Pi-
laf and FaRM-KV, justifies the architectural decision to have
the CPU involved on the GET path for small key-value items.
For a 50% PUT workload, for example, the moderate extra
cost of adding a few more cores—or using the already-idle
cycles on the cores—is likely worthwhile for many applica-
tions.

5.7 Resistance to skew
To understand how HERD’s behavior is impacted by skew,
we tested it with a workload where the keys are drawn from a
Zipf distribution. HERD adapts well to skew, delivering its
maximum performance even when the Zipf parameter is .99.
HERD’s resistance to skew comes from two factors. First,
the back-end MICA architecture [18] that we use in HERD
performs well under skew; a skewed workload spread across
several partitions produces little variation in the partitions’
load compared to the skew in the workload’s distribution.
Under our Zipf-distributed workload, with 6 partitions, the
most loaded CPU core is only 50% more so than the least
loaded core, even though the most popular key is over 105

times more popular than the average.
Second, because the CPU cores share the RNIC, the highly

loaded cores are able to benefit from the idle time provided
by the less-used cores. Figure 13 demonstrates this effect:
with a uniform workload and using only a single core, HERD
can deliver 6.3 Mops. When the system is configured to
use 6 cores—the minimum required by HERD to deliver its
peak throughput—the system delivers 4.32 Mops per core.
The per-core performance reduction is not because of a CPU

 3.5

 4

 4.5

 5

 5.5

 1 2 3 4 5 6

T
h

ro
u

g
h

p
u

t
(M

o
p

s)

Core ID

Zipf (.99)
Uniform

Figure 14: Per-core throughput under skewed and uniform
workloads. Note that the y-axis does not begin at 0.

bottleneck, but because the server processes saturate the PCIe
PIO throughput. Therefore, even if the workload is skewed,
there is ample CPU headroom on a given core to handle the
extra requests.

Figure 14 shows the per-core throughput of HERD for a
skewed workload. The experimental configuration is: 48-byte
items, read-intensive, skewed workload, 6 total CPU cores.
The per-core throughput for a uniform workload is included
for comparison.

6. RELATED WORK

RDMA-based key-value stores: Other than Pilaf and FaRM,
several projects have designed memcached-like systems over
RDMA. Panda et al. [14] describe a memcached imple-
mentation using a hybrid of UD and RC transports. It uses
SEND/RECV messages for all requests and avoids the over-
head of UD transport (caused by a larger header size than
RC) by actively switching connections between RC and UD.
Although their cluster (ConnectX, 32 Gbps) is comparable
to Susitna (ConnectX-3, 40 Gbps), their request rate is less
than 1.5 Mops. Stuedi et al. [25] describe a SoftiWARP [28]
based version of memcached targeting CPU savings in wimpy
nodes with 10GbE.

Accelerating systems with RDMA: Several projects have
used verbs to improve the performance of systems such as
HBase, Hadoop RPC, PVFS [30, 13, 20]. Most of these
use only SEND/RECV verbs as a fast alternative to socket-
based communication. In a PVFS implementation over Infini-
Band [30], read() and write() operations in the filesys-
tem use both RDMA and SEND/RECV. They favor WRITEs
over READs for the same reasons as in our work, suggesting
that the performance gap has existed over several generations
of InfiniBand hardware. There have been several versions of
MPI over InfiniBand [16, 19]. MPICH2 uses RDMA writes
for one-sided messaging: the server polls the head of a cir-
cular buffer that is written to by a client. HERD extends this
messaging in a scalable fashion for all-to-all request-reply
communication. While [30, 13, 20, 16, 19] have benchmarked
verbs performance before, it has been for large messages in
the context of applications like NFS and MPI. Our work ex-
ploits the performance differences that appear only for small
messages and are relevant for message rate-bound applica-
tions like key-value stores.

User level networking: Taken together, we believe that
one conclusion to draw from the union of HERD, Pilaf, FaRM,
and MICA [18] is that the biggest boost to throughput comes
from bypassing the network stack and avoiding CPU inter-
rupts, not necessarily from bypassing the CPU entirely. All
four of these systems use mechanisms to allow user-level
programs to directly receive requests or packets from the
NIC: the userlevel RDMA drivers for HERD, Pilaf, and
FaRM, and the Intel DPDK library for MICA. As we dis-
cuss below, the throughput of these systems is similar, but
the batching required by the DPDK-based systems confers a
latency advantage to the hardware-supported InfiniBand sys-
tems. These lessons suggest profitable future work in making
user-level classical Ethernet systems more portable, easier
to use, and lower-latency. One ongoing effort is NIQ [10],
an FPGA-based low-latency NIC which uses cacheline-sized
PIOs (without any DMA) to transmit and receive small pack-
ets. Inlined WRITEs in RDMA use the same mechanism at
the requesters’s side.

General key-value stores: MICA [18] is a recent key-
value system for classical Ethernet. It assigns exclusive parti-
tions to server cores to minimize memory contention, and ex-
ploits the NIC’s capability to steer requests to the responsible
core [3]. A MICA server delivers 77 Mops with 4 dual-port,
10 Gbps PCIe 2.0 NICs, with 50 µs average latency (19.25
Gbps with one PCIe 2.0 card). This suggests that, compar-
ing the state-of-the-art, classical Ethernet-based solutions can
provide comparable throughput to RDMA-based solutions,
although with much higher latency. RAMCloud [23] is a
RAM-based, persistent key-value store that uses messaging
verbs for low latency communication.

7. CONCLUSION

This paper explored the options for implementing fast, low-
latency key-value systems atop RDMA, arriving at an un-
expected and novel combination that outperforms prior de-
signs and uses fewer network round-trips. Our work shows
that, contrary to widely held beliefs about engineering for
RDMA, single-RTT designs with server CPU involvement
can outperform the “optimization” of CPU-bypassing remote
memory access when the RDMA approaches require multiple
RTTs. These results contribute not just a practical artifact—
the HERD low-latency, high-performance key-value cache—
but an improved understanding of how to use RDMA to con-
struct future DRAM-based storage services.

Acknowledgements We thank our shepherd Chuanxiong
Guo and the anonymous reviewers for their feedback that
helped improve the paper. We also thank Miguel Castro and
Dushyanth Narayanan for discussing FaRM with us, Kirk
Webb and Robert Ricci for getting us early access to the Apt
cluster, and Hyeontaek Lim for his valuable insights. This
work was supported by funding from the National Science
Foundation under awards CNS-1314721 and CCF-0964474,

and Intel via the Intel Science and Technology Center for
Cloud Computing (ISTC-CC). The PRObE cluster [11] used
for many experiments is supported in part by NSF awards
CNS-1042537 and CNS-1042543 (PRObE).

References

[1] Connect-IB: Architecture for Scalable High Performance
Computing. URL
http://www.mellanox.com/related-
docs/applications/SB_Connect-IB.pdf.

[2] Intel DPDK: Data Plane Development Kit. URL
http://dpdk.org.

[3] Intel 82599 10 Gigabit Ethernet Controller: Datasheet. URL
http://www.intel.com/content/www/us/en/
ethernet-controllers/82599-10-gbe-
controller-datasheet.html.

[4] Redis: An Advanced Key-Value Store. URL
http://redis.io.

[5] memcached: A Distributed Memory Object Caching System,
2011. URL http://memcached.org.

[6] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload Analysis of a Large-Scale Key-Value
Store. In SIGMETRICS, 2012.

[7] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking Cloud Serving Systems with YCSB.
In SoCC, 2010.

[8] A. Dragojevic, D. Narayanan, O. Hodson, and M. Castro.
FaRM: Fast Remote Memory. In USENIX NSDI, 2014.

[9] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3:
Compact and Concurrent MemCache with Dumber Caching
and Smarter Hashing. In USENIX NSDI, 2013.

[10] M. Flajslik and M. Rosenblum. Network Interface Design for
Low Latency Request-Response Protocols. In USENIX ATC,
2013.

[11] G. Gibson, G. Grider, A. Jacobson, and W. Lloyd. PRObE: A
Thousand-Node Experimental Cluster for Computer Systems
Research.

[12] M. Herlihy, N. Shavit, and M. Tzafrir. Hopscotch Hashing. In
DISC, 2008.

[13] J. Huang, X. Ouyang, J. Jose, M. W. ur Rahman, H. Wang,
M. Luo, H. Subramoni, C. Murthy, and D. K. Panda.
High-Performance Design of HBase with RDMA over
InfiniBand. In IPDPS, 2012.

[14] J. Jose, H. Subramoni, K. C. Kandalla, M. W. ur Rahman,
H. Wang, S. Narravula, and D. K. Panda. Scalable
Memcached Design for InfiniBand Clusters Using Hybrid
Transports. In CCGRID. IEEE, 2012.

[15] A. Kalia, D. G. Andersen, and M. Kaminsky. Using RDMA
Efficiently for Key-Value Services. In Technical Report
CMU-PDL-14-106, 2014.

[16] J. Li, J. Wu, and D. K. Panda. High Performance
RDMA-Based MPI Implementation over InfiniBand.
International Journal of Parallel Programming, 2004.

[17] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky. SILT: A
Memory-efficient, High-performance Key-value Store. In
SOSP, 2011.

[18] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky. MICA: A
Holistic Approach to Fast In-Memory Key-Value Storage. In
USENIX NSDI, 2014.

[19] J. Liu, W. Jiang, P. Wyckoff, D. K. Panda, D. Ashton,
D. Buntinas, W. Gropp, and B. Toonen. Design and
Implementation of MPICH2 over InfiniBand with RDMA
Support. In IPDPD, 2004.

[20] X. Lu, N. S. Islam, M. W. ur Rahman, J. Jose, H. Subramoni,
H. Wang, and D. K. Panda. High-Performance Design of
Hadoop RPC with RDMA over InfiniBand. In ICPP, 2013.

[21] C. Mitchell, Y. Geng, and J. Li. Using One-Sided RDMA
Reads to Build a Fast, CPU-Efficient Key-Value Store. In
USENIX ATC, 2013.

[22] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee,
H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab,
D. Stafford, T. Tung, and V. Venkataramani. Scaling
Memcache at Facebook. In USENIX NSDI, 2013.

[23] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and
M. Rosenblum. Fast Crash Recovery in RAMCloud. In SOSP,
2011.

[24] R. Pagh and F. F. Rodler. Cuckoo Hashing. J. Algorithms,
2004.

[25] P. Stuedi, A. Trivedi, and B. Metzler. Wimpy Nodes with
10GbE: Leveraging One-Sided Operations in Soft-RDMA to
Boost Memcached. In USENIX ATC, 2012.

[26] S. Sur, A. Vishnu, H.-W. Jin, W. Huang, and D. K. Panda. Can
Memory-Less Network Adapters Benefit Next-Generation
InfiniBand Systems? In HOTI, 2005.

[27] S. Sur, M. J. Koop, L. Chai, and D. K. Panda. Performance
Analysis and Evaluation of Mellanox ConnectX Infiniband
Architecture with Multi-Core Platforms. In HOTI, 2007.

[28] A. Trivedi, B. Metzler, and P. Stuedi. A Case for RDMA in
Clouds: Turning Supercomputer Networking into Commodity.
In APSys, 2011.

[29] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
Integrated Experimental Environment for Distributed Systems
and Networks. In OSDI, 2002.

[30] J. Wu, P. Wyckoff, and D. K. Panda. PVFS over InfiniBand:
Design and Performance Evaluation. In Ohio State University
Tech Report, 2003.

[31] D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G. Andersen.
Scalable, High Performance Ethernet Forwarding with
CuckooSwitch. In CoNEXT, 2013.

http://www.mellanox.com/related-docs/applications/SB_Connect-IB.pdf
http://www.mellanox.com/related-docs/applications/SB_Connect-IB.pdf
http://dpdk.org
http://www.intel.com/content/www/us/en/ethernet-controllers/82599-10-gbe-controller-datasheet.html
http://www.intel.com/content/www/us/en/ethernet-controllers/82599-10-gbe-controller-datasheet.html
http://www.intel.com/content/www/us/en/ethernet-controllers/82599-10-gbe-controller-datasheet.html
http://redis.io
http://memcached.org

	Introduction
	Background
	Key-Value stores
	RDMA
	Comparison with classical Ethernet
	Verbs and queue pairs
	Transport types

	Existing RDMA-based key-value stores

	Design Decisions
	Notation and experimental setup
	Using WRITE instead of READ
	WRITEs have lower latency than READs
	WRITEs have higher throughput than READs

	Using UD for responses

	Design of HERD
	Key-Value cache
	Masking DRAM latency with prefetching

	Requests
	Responses

	Evaluation
	Experimental setup
	Emulating Pilaf
	Emulating FaRM-KV

	Workloads
	Throughput comparison
	Latency comparison
	Scalability
	HERD CPU Use
	Resistance to skew

	Related Work
	Conclusion

