
ECO-DNS:
Expected Consistency Optimization for DNS

Chen Chen
Carnegie Mellon University

chenche1@cmu.edu

Stephanos Matsumoto
Carnegie Mellon University

smatsumoto@cmu.edu

Adrian Perrig
ETH Zurich

adrian.perrig@inf.ethz.ch

Abstract—The flexibility of the current Domain Name Sys-
tem (DNS) has been stretched to its limits to accommodate new
applications such as content delivery networks and dynamic
DNS. In particular, maintaining cache consistency has become
a much larger problem, as emerging technologies require
increasingly-frequent updates to DNS records. Though Time-
To-Live (TTL) is the most widely used method of controlling
cache consistency, it does not offer the fine-grained control
necessary for handling these frequent changes. In addition,
TTLs are too static to handle sudden changes in traffic caused
by Internet failures or social media trends, demonstrating their
inflexibility in the face of unforeseen events.

To address these problems, we first propose a metric called
Expected Aggregate Inconsistency (EAI), which allows us to
consider important factors such as a record’s update frequency
and popularity when quantitatively measuring inconsistency.
We then design ECO-DNS, a lightweight system that leverages
the information provided by EAI to optimize a record’s TTL.
This value can be tuned to individual cache servers’ preferences
between better consistency and bandwidth overhead. Further-
more, our optimization model’s flexibility allows us to easily
adapt ECO-DNS to handle various caching hierarchies such
as multi-level caching while considering the tradeoff among
consistency, overhead, latency, and server load.

I. INTRODUCTION

Caching is an important mechanism for reducing server
load. In the case of the Domain Name System (DNS), we
can reduce server-side load and query latency by introducing
caches, but such caching can cause inconsistency between
cached copies and reference records. To enable the tradeoff
between consistency and overhead, DNS proxy caching
servers, or caching servers for short, employ a Time-To-
Live (TTL) mechanism, which evicts a cached record after
a specified amount of time explicitly stated in the record
itself.

Unfortunately, the traditional TTL-based consistency con-
trol mechanism inherently suffers from two problems. First,
TTL only bounds per-query inconsistency, while ignoring
the number of queries influenced by the inconsistency. Thus
if we consider the notion of aggregate inconsistency, which
accumulates the entire inconsistency across all queries for a
specific record, then in the case of highly popular records
the aggregate inconsistency can become unbounded as it
increases with the number of DNS queries. For example,
when fake (and thus inconsistent) records are returned in

a cache poisoning attack [1], a fake record for the much
more popular “alwaysvisited.com” would affect many more
clients than a fake record for “rarelyvisited.com” even if
they have the same TTL. Hence, aggregate inconsistency
more accurately reflects the impact of a single inconsistent
record on clients.

Second, static owner-defined TTL values are inflexible,
because such TTL values are set with limited knowledge of
the topology of caching hierarchies and are not dynamically
adjusted to adapt to individual caching servers. It is thus
unsurprising that most DNS TTL values are chosen from a
small set of values. Once set, even a TTL value configured
by an ignorant domain administrator will be honored by
DNS cache servers all over the Internet.

The lack of adaptive and dynamic DNS consistency con-
trol also hampers adoption of a hierarchy of DNS caching
servers. In fact, in the current DNS infrastructure we have
observed a reluctance to implement a DNS caching structure
spanning more than two levels [2]. While a multi-level
caching hierarchy could further reduce latency, bandwidth
overhead and server load, it inevitably requires a more
complex consistency control mechanism [3].

With the emergence of dynamic DNS (DDNS) and content
delivery networks (CDNs) such as Akamai [4], DNS records
are expected to be updated more frequently to rapidly adapt
to changes of mapping between domain name and physical
IP. Inconsistent DNS records can result in accessing a
released IP address in DDNS or disrupting the load balanc-
ing of CDNs [5], hindering availability and performance.
Moreover, future Internet architecture proposals such as
SCION [6] propose to frequently update name server entries
to reflect path changes. Such architectures require better
control over name record consistency and need to achieve a
low overhead to enable scalability.

However, proposals targeting to provide better DNS con-
sistency control [7], [8] lack a standard metric to quantify
consistency. Without such a metric, it is difficult to explore
the tradeoff between inconsistency and other network costs
such as bandwidth overhead, to compare different schemes,
and to optimize caching performance.

Therefore, in this paper, we first define a new consistency
metric based on aggregate consistency, which allows us to



quantitatively model the tradeoff between consistency and
bandwidth overhead in a hierarchial caching system. Then,
based on our model, we propose a new consistency control
mechanism for a DNS caching subsystem, called ECO-DNS.
Our approach is to preserve the “pull-based” nature of
DNS and leave the TTL value intact to maintain backwards
compatibility, and at the same time automatically tune the
TTLs of DNS records to optimize performance to a specified
balance between consistency and bandwidth overhead.

In this paper we make the following contributions:

• we define a new metric, Expected Aggregate Incon-
sistency (EAI), which takes into account both real-
time popularity and update frequency and enables a
quantitative measurement of inconsistency,

• we mathematically model the tradeoff between incon-
sistency and bandwidth cost in multi-level caches,

• we design ECO-DNS, a lightweight, backwards-
compatible DNS cache consistency control mechanism
to automate setting TTLs for caching servers, and

• we simulate ECO-DNS with real DNS trace data and
Internet topologies to demonstrate the performance
advantage of ECO-DNS over current DNS caching
schemes.

II. MODEL

In this section, we mathematically define our inconsis-
tency metric, and establish an explicit relationship between
the inconsistency metric and the bandwidth overhead. We
then leverage multi-objective optimization to integrate these
two metrics into one target cost function, which will allow
us to dynamically derive the optimal TTL value. Though in
this paper we focus on applying our model to DNS record
caching, our model also applies to a more generalized TTL-
based caching system.

A. Measuring Inconsistency

Inconsistency in DNS arises from stale records being
returned by caching servers. To measure inconsistency in a
DNS record, we want to answer two main questions. First,
how stale is a record when it is returned? Second, how many
stale records are returned overall?

To answer the first question, we want to consider a DNS
record’s update frequency, since in terms of consistency,
receiving a record that is several updates behind is worse
than receiving one that is a single update behind. As an
example, if we query a cached record for an Akamai server
and a cached record for an obscure unpopular site at the
same rate, we should expect to receive a stale record more
often for the Akamai server because it is updated more
frequently. Therefore, we can measure the inconsistency of
a single DNS response as the number of updates to a record
between the time it was cached and the time it was returned,
and expect to see greater inconsistency from records that are

more frequently updated. This gives rise to the following
definition:

Definition 1: Let q be a DNS query for a record r arriving
at a caching server at time tq, and let t be the time at which
the queried record was cached. Then the inconsistency Ir(q)
of the response to q is

Ir(q) = ur(t, tq) (1)

where ur(t, tq) is the number of updates to r between times
t and tq.

To some degree, TTLs already take into account a record’s
update frequency. For example, Akamai’s type A DNS
records could have a TTL of 20 seconds, while infrequently
updated sites can have TTLs as high as 86400 seconds.
Therefore, even in the current system, records can be cached
according to how often they are updated. However, server
operators set these TTLs by hand, meaning that these TTLs
only take into account the estimated update frequency rather
than the actual update frequency.

The second question motivates the idea of measuring
aggregate inconsistency. Previous work in DNS consistency
protocols [7] has measured consistency simply as whether a
cached copy of a DNS record is the same as the copy of the
record at the authoritative server. However, we want to ex-
tend this and explore how much an instance of inconsistency
affects users.

For example, a stale record for a popular site such as
Google will result in much more aggregate inconsistency
than a very stale record for an unpopular site. This is because
Google receives far more queries, and thus an inconsistent
record will affect many more users in the aggregate sense.
Therefore, we want to consider the popularity of a DNS
record, which will give us a sense of the aggregate incon-
sistency a stale record could cause for a given domain name.

Current TTLs also somewhat take into account the pop-
ularity of a record. For example, Google’s DNS records
have a TTL of 300 seconds, which is much lower than
those of less popular sites. However, sites with high TTLs
may suddenly return a large number of inconsistent records
under the “Slashdot effect,” in which traffic unexpectedly
surges due to a URL appearing in a popular news site,
such as Slashdot. This highlights yet another shortcoming
of manually set TTLs—they generally reflect the estimated
popularity of a domain rather than the real-time popularity.

With the ever-increasing usage of mobile devices in
today’s Internet and future Internet proposals such as
SCION [6], the inconsistency problems arising from only
using TTLs have the potential to get much worse, since
update frequencies will increase with the use of short-lived,
rapidly-changing paths.

Monitoring this popularity not only allows DNS to reduce
the aggregate inconsistency for all types of records, but also



allows for a system that can dynamically allocate resources
to handle various server loads, traffic patterns, and update
frequencies. Therefore, our inconsistency metric is based on
a DNS record’s popularity as well as its update frequency.

Definition 2: Let Qr(T ) be the set of all queries for a
record r received by a DNS caching server in some time
interval T . Then the Expected Aggregate Inconsistency
(EAI) of the caching server is

EAIr(T ) = E

[
∑

q∈Qr(T )
Ir(q)

]
(2)

where Ir(q) is as defined in Equation 1.
The intuition behind EAI is that the inconsistency over all

the queries reflects the popularity of a DNS record. A more
popular DNS record will have more queries and thus affect
more users if it is inconsistent, resulting in a higher EAI.

If we assume that T begins at time t when record r is
cached, then using Equation 1, we can write Equation 2 as

EAIr(T ) = E

[
∑

q∈Qr(T )
ur(t, tq)

]
(3)

which shows more concretely that the EAI of a record is
simply the expected total number of missed updates over all
queries q.

B. Abstracting the DNS Caching Server Topology

So far we have defined EAI for a single DNS caching
server. Generally, caching records from other caches or
secondary nameservers is discouraged due to increased
dependencies and delays in propagating updates [9]. How-
ever, much evidence demonstrates that “chained-resolution”
widely exist in today’s Internet [10]–[12]. Accordingly, we
consider these “chains” of caching in order to provide a
general model more flexible to changes in DNS caching,
which may increase with the advent of future Internet
architectures.

We thus consider a hierarchy of DNS caches, which we
call a logical cache tree. This represents a hierarchy of
caches, where the root node caches records directly from
the authoritative server and the other nodes cache records
from their respective parents. This structure is illustrated in
Figure 1.

In a logical cache tree, a caching server is defined to
be a child of another if it fetches and caches DNS records
from that server. For example, the logical cache tree for
DNS record “google.com” is made up of Google’s author-
itative server “ns1.google.com” and all the caching servers
querying “ns1.google.com” for the DNS record including
proxy caching servers directly answering clients’ queries,
and DNS forwarders answering queries from other proxy
caching servers. Thus the DNS forwarders are parents of
proxy caching servers which query domain names from

Authoritative Server

Intermediate Caching Server

Leaf Caching Server

Client

Server Hierarchy

Figure 1. Structure of a logical cache tree.

them, and the authoritative servers are parents of both DNS
forwarders and other caching servers which directly query
those authoritative servers for the domain name. For DNS
records served by multiple authoritative servers for load
balancing, we treat all of the authoritative servers as a single
root node, though these servers may be distributed across the
network. In this way, there will be only one logical cache
tree for a single DNS record.

C. Assumptions

To simplify the analysis of our model, we assume that
the queries and updates for a single DNS record received
by a caching server can be modeled by a Poisson process.
Thus queries occur independently of each other and do
not arrive simultaneously at any time. Furthermore, the
interval between two successive queries follows a negative
exponential distribution. Previous work by Chen et al. [7]
has confirmed this pattern, but our model can be analyzed
with any underlying distribution.

We further assume that for a given record, the queries
received by any two caching servers are independent. There-
fore, the arrival patterns of queries at different caching
servers can be treated as two entirely independent stochastic
processes. While of course certain events such as the broad-
cast of a highly-anticipated sporting event may cause queries
to increase to many caching servers in a similar manner, the
increase is caused by an external event rather than by another
caching server. In reality there is some correlation since a
child cache may use its own query volume to determine the
rate at which it queries its parent cache, but we expect that
queries from child caches will constitute a negligible fraction
of a parent cache’s total queries.

Finally, we assume that a caching server prefetches a
cached record when its TTL expires. One advantage of
this “eager” caching behavior is that after a popular record
expires, the extra latency of contacting a parent cache or au-
thoritative server on the following query can be avoided [7].



t
0

T
0

T
1

T
2

C
0

C
1

C
2

t
1

t
2

t
q

Figure 2. Cascaded inconsistency from caching server C0 to C1 and C2.
The record that C2 caches at time t2 is the same record cached by C0 at t0,
and thus Ir(q) should be measured from t0.

The disadvantage, however, is that unpopular records will be
prefetched without benefiting any client. As a consequence,
it would be desirable to consider the capacity of the storage
device and select only the most popular records to cache.
We will discuss DNS record selection in Section III-C in
more detail.

D. Modeling Inconsistency in the Logical Cache Tree

Our assumptions provide several properties that aid the
analysis we present in this section. Modeling query arrivals
as a Poisson process allows us to concretely estimate the
aggregate inconsistency of a given caching server. The
independence of caching servers eliminates dependencies
which may clutter our analysis. Finally, prefetching allows
us to focus on the critical problem of calculating the EAI
rather than what happens in the short period between a
record’s expiration and its subsequent re-caching.

However, up to this point we have calculated inconsis-
tency as if a caching server were directly querying the
authoritative nameserver for a record. Calculating incon-
sistency in a logical cache tree is more complicated, as
caching servers pass on their possibly inconsistent records
in response to their children’s queries.

The resulting effect is a “cascaded” inconsistency. As
shown in Figure 2, C2 will respond to query q with a copy
of a record that was originally cached at time t0. Therefore,
calculating the inconsistency of the response to q based on
ur(t2, tq) would underestimate the true value. Rather, the true
inconsistency should be calculated based on ur(t0, tq).

Notice also from Figure 2 that

ur(t0, tq) = ur(t0, t1)+ur(t1, t2)+ur(t2, tq) (4)

which follows from the fact that t1 and t2 are the times that
C1 and C2 query their parent server. We can then define the
cascaded inconsistency as follows:

Definition 3: Let A(Cn) be the set of ancestors of a
caching server Cn excluding the root of its logical cache tree,
and p(i) the index of the parent caching server of caching
server Ci. Each Ci has cached their copy of the record r at

time ti. Then, the cascaded inconsistency of a response to
a query q at Cn is defined as

Ir(q,Cn) = ur(tn, tq)+ ∑
i∈A(Cn)

ur(tp(i), ti) (5)

where Ir(q,Cn) is the inconsistency of query q at server Cn.

Following Definition 2, we can define the EAI for caching
server Cn in r’s logical cache tree during any time period Tn
starting at time tn

EAIr(Tn,Cn) = E

[
∑

q∈Qr(Tn)

Ir(q,Cn)

]
(6)

Let t ′n be the time when record r expired on caching
server Cn. From now on, we will only consider Tn = [tn, t ′n].
Depending on the way each caching server sets the TTL, we
derive two closed form expressions of EAI.

Case 1 (adopted by current DNS): In this case, when re-
sponding to a query for record r from a child caching server,
the parent caching server appends the outstanding TTL to
the replied message, which is computed by subtracting the
TTL for r from the parent caching server by the time that
has elapsed since r was first cached. Upon receiving the
response, the child caching server retrieves the “outstanding
TTL” from the response and sets it as the TTL for record r.
Following this way, the expiration time t ′i s for r on all the
descendant caching servers Ci of a caching server Cn will be
exactly the same as that on Cn. Interestingly enough, with
our assumption that a caching server prefetches a cached
record when its TTL expires, the time tis when r will be
cached again on all Cis will also be exactly the same as tn. As
a result, the lifetime Ti of a cached record on each caching
server Ci belonging to the same sub-tree of the logical cache
tree will be “synchronized”.

Applying our assumption of Poisson processes for both
record updates and queries, we derive the EAI for a given
caching server Cn over time period Tn as

EAIr(Tn,Cn) =
1
2

λnµ∆T 2
n (7)

where µ is the update frequency parameter of the Poisson
process for record update, λn is the query rate parameter
of the Poisson process for queries to caching server Cn and
∆Ti = t ′i − ti for a given Ti = [ti, t ′i ] is actually the TTL of
record r on caching server Ci.

Case 2: In this case, upon receiving a response to a DNS
query, each caching server independently decides the TTL
to set. Following this method, the lifetime Tis of different
caching servers within a sub-tree no longer correlate with
each other. Similarly, with the assumptions of Poisson pro-
cesses for both record updates and queries, we derive the
EAI for a given caching server Cn over time period Tn in r’s



logical cache tree as

EAIr(Tn,Cn) =
1
2

λnµ∆Tn

(
∑

Ci∈A(Cn)

∆Ti

)
(8)

E. TTL Optimization

From Equations 7 and 8, we can see that changing the
∆T values (which we henceforth use to represent the TTL
of a record at a given caching server) controls the EAI of a
record in a logical cache tree. By decreasing the TTL, we
can reduce the aggregate inconsistency in a logical cache
tree. However, this in turn shifts a greater burden to the
bandwidth overhead. Therefore, in order to address the trade-
off between inconsistency and bandwidth cost, we formulate
a multi-objective optimization problem to calculate a TTL
that will strike the optimal balance between inconsistency
and bandwidth overhead.

In addition, instead of optimizing the TTL for each
server individually, we consider the global inconsistency and
bandwidth because it is desirable for a caching server to
slightly increase its bandwidth overhead to greatly reduce the
inconsistency experienced by its descendant caching servers.

For a DNS record r, we let M be the set of all caching
servers in the logical cache tree, ∆Ti the TTL for r on
Ci, EAIr(Ti,Ci) the EAI during the time period Ti, and bi
the bandwidth cost in bytes to cache a record (the size
of the record times the number of hops from the parent).
For a specific caching server Ci, the EAI per unit time is
EAIr(Ti,Ci)/∆Ti, and the amortized bandwidth cost per unit
time is bi/∆Ti. Recall that our goal is to find an appropriate
TTL value ∆Ti to achieve a specified balance point between
inconsistency and bandwidth overhead. As a result, we can
seek to utilize multi-objective optimization by setting the
target cost function U as follows:

U = ∑
Ci∈M

EAIr(Ti,Ci)

∆Ti
+ c · bi

∆Ti
(9)

where c is a factor describing the “exchange rate,” that
is, how much bandwidth can be sacrificed for better con-
sistency. We address how to set the exchange rate c in
Section V. Our goal then is to compute the TTL values
∆Ti which minimize the target cost function.

For Case 1 in Section II-A, we substitute the expression
for EAI from Equation 7 and solve for the optimal TTL
value ∆T ∗i s by finding the minimum of the cost function U :

∆T ∗i =

√
2c · (∑C j∈S(Ci) b j)

µ(∑C j∈S(Ci) λ j)
(10)

where λ j is the rate parameter of queries to C j and S(Ci)
is the set of all the caching servers within the sub-tree
containing Ci and rooted at the highest caching server.

Similarly, for Case 2 in Section II-A, we substitute the
expression for EAI from Equation 8 and solve for the
minimum optimal TTL value ∆T ∗i s:

∆T ∗i =

√√√√ 2c ·b j

µ

(
∑C j∈D(Ci) λ j +λi

) (11)

where D(Ci) is the set of all descendant caching servers of
server Ci.

The two forms of optimal TTLs in Equations 10 and 11
have different numbers of required parameters. For Case 1,
to compute the optimal TTL for any caching server, λi and bi
from each caching server Ci in S(Ci) are required. However,
for Case 2, in order to calculate the optimal TTL, only
the λi from each descendant caching server Ci is required.
For a logical DNS cache tree where each node has many
children and the tree size is on the order of the number
of DNS cache servers in the whole world, the number of
estimated parameters required in Case 2 for each cache
server is significantly smaller than that required in Case 1.
In the following sections, we will focus on the model for
Case 2 to reduce the number of required parameters, which
in turn equals the number of caching servers uploading the
parameters, and therefore improve the usability of the model.

With the form of ∆T ∗i in Equation 11, each caching server
can collect the parameters c, bi, µ and (∑C j∈D(i) λ j)+ λi,
which is the sum of λ s from all its descendant cache servers,
and compute the optimal TTL to minimize the global cost
function U . The minimum of the cost function U is:

U∗ = ∑
Ci∈M

√√√√√2cµbi

 ∑
C j∈D(Ci)

λ j

+λi

 (12)

III. SYSTEM DESIGN

We now address the following real-world aspects of
ECO-DNS: a) parameter monitoring and aggregation, b)
how to set the TTL value, c) DNS record selection, and d)
prefetching DNS records. We will then discuss deployment
challenges for ECO-DNS.

A. Parameter monitoring and aggregation

To follow our model in Section II, ECO-DNS requires
caching servers to estimate the update frequency µ and the
frequency of queries λ . While all caching servers share the
same update frequency of a given record and could possibly
retrieve it as a field of the DNS record, each caching server
has to independently estimate its own local query frequency.
In addition, for multi-level logical cache trees, λ s originated
from various nodes must be aggregated and made available
to other nodes. More specifically, each node, in order to
calculate its optimal TTL value, must have access to the λ s
of all of its descendant nodes.



In ECO-DNS, for each DNS record, the nodes in the
logical cache tree are divided into three categories: the
authoritative server serving the updated record, intermediate
caching servers caching the DNS entry, serving queries
originating from descendant caching server nodes, and leaf
cache servers directly answering the DNS queries from
clients. As shown in Table I, nodes belonging to different
categories will take different responsibilities. First, the root
node estimates the update frequency µ and incorporates it
into the DNS record. Second, the intermediate caching server
nodes estimate the λ of the queries, aggregate parameter λ s
received from descendants, and propagates the aggregated
value upwards. Finally, the leaf caching servers estimate the
local λ ’s and append the local λ in each query sent to the
parent server.

Node Estimated Param. Aggregated Param.
Authoritative Server µ

Intermediate Server λ λ

Leaf Server local λ append λ in queries

Table I
ROLES AND TASKS OF DIFFERENT NODES IN THE LOGICAL CACHE TREE.

To estimate the update frequency parameter µ , the root
node preserves a history of record updates and estimate
the parameter accordingly. To estimate the query frequency
parameter λ , each node utilizes a sliding window method to
estimate the query frequency periodically.

To aggregate the Poisson Process rate parameters λ ,
we present two algorithms exploring the trade-off between
accuracy and the amount of state kept on parent caching
servers. Each caching server can arbitrarily select either
of these two methods based on the trade-off between the
amount of state it can maintain and the required accuracy.

In the first design, when a record stored in a cache server
expires, the caching server appends the current aggregated
λ value to the query. The parent caching server keeps
an updated λ value for each of its children. This design
requires per-child state, and is sensitive to topology changes
in the logical cache tree, but provides accurate parameter
aggregation.

In the second design, when a record stored in a caching
server expires, the caching server appends the product of
the parameter λ and the current TTL value ∆T . On the
parent caching server side, instead of keeping state for each
of its children, the parent caching server will aggregate the
product λi∆Ti in a sampling session with time duration [t, t ′].
After the sampling session, the parent server estimates the
aggregated value as:

∑i∈Q λi∆Ti

t ′− t
where Q is the set of sampled DNS queries. This design
does not require per-child state and is robust to topology

churn in the logical cache tree. However, it is possible for
the sampling method to fail in covering parameters from all
child servers, which renders the method less accurate.

B. Setting TTL

The final TTL ∆T for a cached DNS record depends on
two TTL values: the pre-defined TTL value ∆T d specified
in the DNS record, and the locally-calculated optimal TTL
value ∆T ∗ based on observed parameters. For the latter TTL,
as long as a caching server is provisioned with λ parameters
aggregated from all its descendant caching servers and with
the µ parameter it can use Equation 11 to compute ∆T ∗.
The resulting TTL value ∆T is

∆T = min(∆T ∗,∆T ). (13)

The decision of setting the TTL as the minimum between
an automatically calculated value and a pre-determined value
precludes two extreme cases. First, some records may be so
“unpopular” that their optimal TTL is set to be exceedingly
long. This method allows the owner of the DNS record to set
an upper bounds over the TTL value. Second, during DNS
cache poisoning attacks [13], the pre-determined TTL value
of the fake DNS record could possibly be set to a huge
number. In this case, the final TTL would be completely
determined by a local calculated TTL. As a consequence,
hijacking a popular DNS record becomes more challenging,
as the fake DNS record will soon be dissipated with the
timeout.

Each time a DNS record is first cached or refreshed, the
caching server sets the TTL value based on Equation 13.
During the lifetime of the cached record, this TTL value
is fixed even though the underlying parameters may change.
Compared to resetting the TTL value upon detecting param-
eter changes, this methodology reduces the computation cost
of re-calculating optimal TTL values and avoids fluctuation
of TTL within short time. Following this method, the more
popular a DNS record is, the smaller the TTL is set, and the
more “up-to-date” its corresponding TTL will be.

C. DNS record selection

ECO-DNS allows individual caching servers to select
DNS records whose TTLs are managed and optimized.
Generally, it is desirable to evict less popular records to
accommodate more popular ones. Furthermore, caching and
managing unpopular records is not economical, because
resources are spent without benefiting any clients.

ECO-DNS relies on a traditional cache replacement al-
gorithm to decide which DNS records to manage. Particu-
larly, ECO-DNS utilizes the Adaptive Replacement Cache
(ARC) algorithm [14] to account for heavy-tail DNS access
patterns [15]. ARC is a self-tuning, low-overhead cache
replacement algorithm which provides higher hit ratio under
one-time accesses and loop accesses given the same amount



of resources. The algorithm divides cached objects into two
subsets: T -set, in which the whole object is cached, and
B-set, in which only the metadata of the object is cached.
For the DNS records in the T -set, ECO-DNS maintains and
updates the parameters, and computes the optimal TTL for
them. For the DNS records in the B-set, ECO-DNS will
only keep the last estimated λ ’s for them as the initial
values in case these records are added back to the T -set. The
administrator is simply responsible for setting the number of
DNS records for ECO-DNS to manage, and ECO-DNS can
then self-tune based on local queries.

D. DNS record prefetching

ECO-DNS prefetches new records upon expiration of
cached records. In the traditional way to handle record
expiration, the new DNS record will not be fetched until
the next query for that record arrives. Consequently, the
next query usually suffers from latency which is an order of
magnitude larger than for the query for a cached record [15].
However, without knowledge of the popularity of a DNS
record, prefetching a record upon expiration could create
a high overhead: unpopular records would be prefetched
without benefiting any queries simultaneously.

With knowledge about records’ popularity as a corner-
stone, ECO-DNS breaks this dilemma by only prefetching
the records that are expected to be queried soon, that is,
records with relatively large λ values. Therefore, the latency
caused by expired cached records is eliminated for popular
records.

E. Ease of deployment

ECO-DNS is a lightweight system that is easy to deploy.
First, for network traffic, ECO-DNS adds only one extra field
in each DNS query and answer message, without requiring
new message exchanges or protocol changes. Second, for
extra state, ECO-DNS requires only O(1) state for each DNS
record. Third, for the software model, ECO-DNS requires no
asynchronous events to be processed. As a result, it can be
easily implemented and deployed as a module of current
DNS software [16].

As for incremental deployment, ECO-DNS can be de-
ployed alongside current legacy servers. For a single-level
cache hierarchy, where each caching server directly contacts
the authoritative server, the administrator can individually
deploy ECO-DNS on each caching server to improve the
caching server performance. For a multi-level cache hierar-
chy, ECO-DNS can be deployed from lower-level caching
servers to higher-level ones. As long as the caching servers
within a sub-tree implement ECO-DNS, ECO-DNS will
function perfectly independently from caching servers in
other sub-trees.

10
3

10
4

10
5

10
6

10
7

10
8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ave. Update Interval µ
−1

N
o
rm

al
iz

ed
 R

ed
u
ce

d
 T

ar
g
et

 C
o
st

 

 

c=1/1K

c=1/100K

c=1/10M

c=1/100M

c=1/1G

Figure 3. Normalized reduced target value for the single-level caching
hierarchy.

IV. EVALUATION

We now evaluate ECO-DNS by carrying out simulations
based on real DNS traces and AS topology data. In our
evaluation, we seek to answer three main questions:

• For a given cost in bandwidth, does ECO-DNS achieve
better consistency than manually setting TTL in today’s
Internet?

• How do the inconsistency and bandwidth overhead of
a multi-level caching scheme with ECO-DNS compare
to those of a single-level DNS caching scheme?

• How well does the optimization mechanism of
ECO-DNS adapt to real-time changes in the rate pa-
rameters of DNS queries?

A. Dataset

KDDI, the second largest ISP in Japan, provided us with
DNS trace data containing 10 minutes of traffic to their
DNS caching server every four hours on Feb. 28th, 2013
and Mar. 3rd, 2013. These data include DNS query arrival
times, response packet sizes and response record types. The
data are divided by different domains, which are in turn
categorized based on their popularity: the top 100 most
popular domains, and the domains which in each trace are
queried at most 100K, 10K, 1K and 100 times, respectively.
These data enable us to test our model under a range of
domain popularities and network conditions.

B. Single-Level Caching

To explore the consistency benefits of ECO-DNS over
manually set TTL used by current DNS caches with respect
to various combination of parameters, we design a simu-
lation for a simple topology, containing a single caching



10
3

10
4

10
5

10
6

10
7

10
8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Ave. Update Interval µ
−1

N
o
rm

al
iz

ed
 R

ed
u
ce

d
 I

n
co

n
si

st
en

cy

 

 

c=1/1K

c=1/100K

c=1/10M

c=1/100M

c=1/1G

Figure 4. Normalized reduced inconsistency for the single-level caching
hierarchy.

server and an authoritative server. We set the number of hops
between the caching server and the authoritative server as 8
hops. We simulate a period of time over 1000 DNS record
updates in the authoritative server. Because this time period
(weeks or even years) is longer than the time period of our
DNS trace from KDDI, we repeat the DNS trace itself to
create one of sufficient length. In the simulation, we simulate
both ECO-DNS and manually set TTL-based method, with
the manually set TTL as 300s, which is common for popular
domains. The values of the target function and the number of
inconsistent DNS answers are recorded and compared when
varying the average update intervals and the weight c that
quantifies the tradeoff between clients’ missed updates and
bandwidth cost.

Figure 3 shows the reduced cost normalized by the total
cost using manually-set TTL, with respect to different values
of update interval and weight c. The update intervals vary
from 2 hours to 1 year and the weight c would change from
1KB per inconsistent answer (a high consistency require-
ment) to 1GB per inconsistent answer (a low consistency
requirement). In general, ECO-DNS could reduce the cost
by 90% when the average update interval is within a week.
When the average update interval increases as the update
frequency drops, the reduced target function value will fall
to 10%, as the manually set TTL becomes closer to the
optimal TTL.

Figure 4 shows the reduced inconsistency normalized by
the total inconsistency using manually-set TTL, with respect
to different values of update intervals and weight c. The
overall curves are similar to the curves for reduced target
function values. Nevertheless, Figure 4 demonstrates the
effect of changing the weight c. When c is as small as 1KB
per inconsistent answer, ECO-DNS automatically adjusts the

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

7

8

9

10

Number of Child Nodes

C
o
s
t

 

 

DNS

ECO−DNS

Figure 5. Cost for each node in the CAIDA cache trees versus the number
of children of the node.

TTL value to decrease the query updating rates to alleviate
the bandwidth burden caused by DNS records updating.
As the weight c grows larger, indicating a preference for
consistency over bandwidth, ECO-DNS re-adjusts the TTL
value to update more frequently to reduce inconsistency.

C. Multi-Level Caching

To measure the consistency and overhead benefits that the
deployment of ECO-DNS would have in a logical cache
tree, we simulated our caching model and a model of
the current DNS caching mechanism on various network
topologies. We collected real-world topologies from the
Inferred AS Relationships data set from CAIDA [17], and
generated similar topologies using Tomasik and Weisser’s
aSHIIP [18], a hierarchical random topology generator.
From these topologies we constructed logical cache trees
of various sizes and depths on which to test our models.

We obtained a total of 270 logical cache trees from the
CAIDA dataset and generated 469 logical cache trees using
aSHIIP. We used a general linear preference (GLP) model
to generate our random topologies, with parameters m0 = 10
(number of starting nodes), m = 1 (number of edges added),
p = 0.548 (probability of adding an edge versus a node)
and β = 0.80 (preference to connect a new node to more
popular nodes) [19]. These parameters yield topologies with
core sizes and peering link ratios similar to those in the
CAIDA dataset [20]. The edges in the GLP topology were
then classified as provider-to-customer or peer-to-peer based
on aSHIIP’s inference algorithm.

From these topologies we were able to form logical cache
trees by assigning each customer node an unique provider.
If the node had multiple providers in the original topology,
we randomly chose a provider, weighting the probabilities of



each provider by relative total degree. We constructed a total
of 558 logical cache trees ranging in size from 2 to 11057
nodes and spanning up to six levels. (We did not consider
single-node trees, as that would represent an authoritative
server with no caching servers.)

For a given cache tree, we conducted 1000 runs of our
simulation. In each run we randomly chose the λ parameters
for each leaf node and the size of the response for the DNS
records, modeling the distribution of these values after those
in the KDDI data.

Note that in today’s DNS, pre-defined TTLs are often
poorly set, so rather than using TTLs similar to those in the
wild for our model of the current DNS, we chose to compare
the performance of ECO-DNS to that of DNS assuming
that the TTL is optimally chosen. Therefore, our simulations
demonstrate a lower bound for the performance benefits of
ECO-DNS over the current system.

In order to determine the optimal value of the target
function in today’s DNS, we simply set the TTL for each
node to be the same and find the TTL that minimizes the
cost function U . This TTL is

∆T ∗ =

√√√√ 2c∑i∈M bi

µ ∑i∈M

(
λi +∑C j∈D(Ci) λ j

) (14)

To account for the fact that ASes near the root of our
topologies are often larger than at the bottom, we define
bi as the size of the response times 4 hops for ASes at
depth 1, 7 hops for those at depth 2, 9 for those at depth 3,
and an additional hop over that of the previous depth for all
other nodes. However, since in ECO-DNS the nodes pull the
record from their parents rather than the authoritative server,
in this model we define bi to be the size of the response times
4 hops for ASes at depth 1, 3 hops for those at depth 2, 2
hops for those at depth 3, and 1 hop for those at greater
depth.

In addition to calculating the optimal value of the target
function, we also calculated the sum of the inconsistency and
overhead for each node. Figs. 5 and 6 show the value of the
cost function U under today’s DNS and ECO-DNS required
by each node versus the number of children the node has.
Note that parents with more children bear a greater cost
because they must update more frequently to minimize the
inconsistency of the records their children receive.

Figs. 7 and 8 present the average cost for a node in each
level of a CAIDA and aSHIIP topology, respectively. The
high variability in the first level is due to the fact that both
small and large cache trees have nodes in level 1, resulting
in nodes with a wide range of connectivity. In deeper levels,
there are fewer cache trees with nodes at that depth and
therefore a smaller range in the number of a children a node
may have.

0 50 100 150 200 250 300
−1

0

1

2

3

4

5

6

Number of child nodes

C
o
s
t

 

 

DNS

ECO−DNS

Figure 6. Cost for each node in the aSHIIP-generated cache trees versus
the number of children of the node.

0 1 2 3 4 5 6 7
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Level

C
o
s
t

 

 

DNS

ECO−DNS

Figure 7. Average cost for a node in each level of a CAIDA cache tree.
Error bars represent the standard error of the mean.

D. Convergence upon parameter changes

To evaluate how ECO-DNS reacts to the changes of λ

parameter for DNS queries and investigate the performance
impact of the deviation between estimated λ and real λ ,
we design a simulation on the same topology as that in
Section IV-B, i.e., a single caching server and an author-
itative server. The simulation is based on one of the DNS
query trace data from KDDI, which records the queries for
a domain name received by a DNS caching server during
the time period of a day. The trace data is divided into
six pieces, each of which is a 10-min trace and is sampled
every 4 hours. The λ s computed from each piece of the trace
data are [301.85, 462.62, 982.68, 1041.42, 993.39, 1067.34].
Based on the extracted λ s, we simulate the Poisson Process



0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Level

A
v
er

ag
e 

C
o
st

 

 

DNS

ECO−DNS

Figure 8. Average cost for a node in each level of a aSHIIP cache tree.
Error bars represent the standard error of the mean.

for DNS queries of 24 hours, during which each λ stays
the same for 4 hours. We intentionally set the initial λ as
the mean value of the λ s from the trace data to simulate
the influence caused by the initial λ value. We compare two
designs for parameter estimation: a) counting the number of
queries within a fixed-length time window, and b) calculating
the duration given a fixed number of queries. We simulate
a) with time interval 100s and 1s, while we simulate b) with
number of queries 5000 and 50.

0 1 2 3 4 5 6 7 8 9

x 10
4

200

400

600

800

1000

1200

1400

1600

Time

E
s
ti

m
a
te

d
 λ

 

 

100s

1s

50 queries

5000 queries

Figure 9. Dynamics of the estimated λ on parameter changes.

Figure 9 shows the dynamics of the estimated λ upon
parameter changes. According to the figure, there are two
conflicting factors that affect the performance of parameter
estimation. The first one is the convergence speed, which
depicts how fast the parameter estimation method can update

the parameter to the new value. The second one is stability,
which indicates how large the amplitude of the vibration
of the estimated parameter is when the parameter stays
unchanged. In Figure 9, while method b) with 50 queries
converges within seconds, we observe a vibration amplitude
larger than 10% of the real λ . Instead, a) with 100s will
take 10 minutes before the estimated parameter converges,
but the amplitude of the vibration is within 0.1% of the true
value. The dynamics of a) with 1s and b) with 5000 queries
sit in the middle, possessing faster convergence speed than
a) with 100 and smaller deviation than b) with 50 queries.

0 1 2 3 4 5 6 7 8

x 10
4

1

1.02

1.04

1.06

1.08

1.1

1.12

Time

N
o
rm

a
li

z
e
d
 C

o
s
t

 

 

0 1000 2000 3000 4000 5000
1

1.005

1.01

1.015

1.02

8 8.1 8.2 8.3 8.4 8.5

x 10
4

1

1.0002

1.0004

1.0006

1.0008

1.001

100s

1s

50

5000

Figure 10. Extra cost incurred upon parameter changes.

Figure 10 demonstrates the extra cost caused by the
deviation of the estimated λ from the real λ under different
parameter estimation methods. Here, normalized cost is
calculated by dividing cumulative cost with estimated λ by
cumulative cost with real λ . We could observe from the
figure that the two factors discussed above influence the extra
cost in different ways. While the low convergence speed
will incur a one-time extra cost, the lack of stability will
incur cumulative extra cost growing as time goes on. For
instance, in the left zoom-in sub-figure, method a) with 100s
and method b) with 5000 incur a relatively large extra cost
because of the slow convergence from initial λ to real λ . On
the other hand, in the right zoom-in sub-figure, method b)
with queries number 50 incur an extra cost linear in time,
which is reflected by the constant normalized extra cost.
Therefore, if the frequency of the parameter changes is very
high, we should choose the parameter estimation method
with fast convergence speed. Otherwise, in most cases,
we should choose the parameter estimation method with
better stability. In general, after 10 minutes from starting
ECO-DNS, the extra cost incurred by parameter estimation
is within 0.1% of the total cost, which is usually negligible
compared to the improvement of ECO-DNS over current
DNS caching.



V. DISCUSSION

In Equation 9, we utilize the weight c to quantify the
tradeoff between the number of the clients’ missed updates
and the bandwidth cost of querying a DNS record. The
administrator of the local cache server could tune this c
parameter to balance the consistency, as part of quality of
its caching service, and bandwidth cost. In addition, the
administrator could intentionally set the weight c as the
globally agreed value, which could reflect the global tradeoff
between inconsistency and bandwidth cost. Interestingly, the
establishment of the DNS cache hierarchy itself actually
provides hints about the range of the weight c that is well
accepted. While one-level cache is constructed to reduce
the bandwidth cost through sacrificing consistency, the fact
that no two-level cache is widely deployed reflects the
reluctance against further sacrificing the consistency for
reducing the bandwidth cost. Therefore, the global weight
c could possibly be set as a value corresponding to the
underlying trade-off.

We also observe in Equation 9 the parameter b which
characterizes the bandwidth cost of updating the local DNS
record. One form of b could be calculated as the product
of the size of a DNS record and the number of hops. This
form well characterizes the number of bits transmitted in the
whole network to update the local record. Another form of b
could be calculated as the latency of transmitting the DNS
record. While the latency could only roughly indicate the
real bandwidth cost, it could cover the server load and the
network status. Finally, b could also directly reflect the real-
world expense by considering the bandwidth cost between
customer and provide ISPs. By setting the parameter b in
different forms, the administrator controls over different
forms of cost he/she would like to limit.

VI. RELATED WORK

The assumption that the stochastic process of DNS
queries’ arrival time could be modeled as a Poisson Process
has been adopted and verified by Cohen et al. [21] and
Chen et al. [7]. Jung et al. [15] seek to extend the TCP
arrival time model to model DNS traffic and propose to use a
Pareto or Weibull distribution to model the distribution of the
arrival time of DNS queries. Jung [22] further weakens the
assumption to model the random process of DNS queries’
arrival time by a renewal process, without assuming any
distribution of the arrival intervals between DNS queries.
In this work, we rely on no particular assumption about
distribution of the arrival time to derive our inconsistency
metric and move one step further to use the Poisson process
assumption to optimize the performance of ECO-DNS.

Differing from our efforts to preserve the “pull-based”
nature of the current DNS cache system and enhance its
consistency by optimizing its behavior, several works have
been proposed to revolutionize the way current DNS works

to improve various performance metrics including bandwidth
cost, latency, consistency and security against Denial of
Service (DoS) attacks. Handley et al. [8] and Chen et
al. [7] have proposed that the authoritative servers push
DNS records to caching servers to improve robustness and
consistency, respectively. The key observation under these
two works is that the number of active DNS records is
actually limited and manageable. However, in order to push
the DNS records directly from an authoritative server to
n subordinate caching servers, it still requires O(n) state
stored on both the authoritative server and the cache servers,
which is difficult to manage across the whole networks and
consume local storage.

As another direction, Ramasubramanian [23] proposes
CoDoNS, which leverages peer-to-peer overlay networks to
improve load balance and resilience against denial-of-service
attacks. However, improved availability comes at the price
of weakened consistency. In fact, the distributed nature of
DNS records render it even more challenging to maintain
consistent cached DNS records. As a consistency control
mechanism, ECO-DNS could be combined with CoDoNS
to further reduce the latency of DNS resolution and retain
high consistency while preserving high availability.

Finally, Sharma et al. [24] propose Auspice, a new global
name service with low-latency, high availability, and high
consistency by replicating records across geo-distributed
servers in a demand-aware manner. While Auspice tar-
gets bounded consistency for all mobile clients’ records,
ECO-DNS solves an tunable optimization problem between
consistency and update cost, resulting high consistency for
popular and dynamic records and low cost for unpopular and
static records. Furthermore, instead of requiring new name
service infrastructures, ECO-DNS bases itself on today’s
DNS architectures which greatly reduces its deployment
difficulty.

ACKNOWLEDGMENT

We gratefully thank Akira Yamada, Takashi Matsunaka,
and Ayumu Kubota from KDDI for providing us the DNS
data, Vyas Sekar, Soo Bum Lee, Kevin Fall for insightful
feedbacks of the initial version of the paper, and the anony-
mous reviewers for their valuable comments.

The research leading to these results has received funding
from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) /
ERC grant agreement 617605. We also gratefully acknowl-
edge support by ETH Zurich, and NSF under award number
CNS-1040801.

VII. CONCLUSION

Current static TTL-based cache invalidation policies are
sub-optimal and difficult to configure in a flexible fashion.
Furthermore, the lack of comprehensive consistency control



prevents us from leveraging a multi-level caching hierarchy
to further reduce network overhead. Without formal defini-
tion of a consistency metric, it is very difficult to explore
the tradeoff between consistency and network cost, and to
optimize the performance of cache servers.

In this paper, we first define a consistency metric, and
formally model the tradeoff between inconsistency and
bandwidth cost in the DNS cache hierarchy. Based on
this model, we propose ECO-DNS, an effective consistency
control system that automatically adjusts the TTL according
to local popularity and the update frequency of the DNS
record. Simulations show that ECO-DNS can reduce the
inconsistency by 90% in the single-level cache hierarchy
and also enables multi-level cache hierarchies. The Internet
could greatly benefit from the improved consistency that
ECO-DNS provides, even while reducing the total band-
width overhead of DNS queries.

REFERENCES

[1] D. cache poison attack incidents in Brazil,
“http://threatpost.com/major-dns-cache-poisoning-
attack-hits-brazilian-isps-110711/.”

[2] “Understanding DNS forwarders,” http://technet.
microsoft.com/en-us/library/cc782142(v=ws.10).aspx.

[3] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F.
Schwartz, and K. J. Worrell, “A hierarchical internet
object cache,” in Proceedings of USENIX ATC, 1996.

[4] Akamai, “www.akamai.com.”
[5] J. Pang, A. Akella, A. Shaikh, B. Krishnamurthy,

and S. Seshan, “On the responsiveness of dns-based
network control,” in Proceedings of ACM IMC, 2004.

[6] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig,
and D. G. Andersen, “SCION: Scalability, control, and
isolation on next-generation networks,” in Proceedings
of IEEE Oakland, 2011.

[7] X. Chen, H. Wang, and S. Ren, “DNScup: Strong cache
consistency protocol for DNS,” in Proceedings of IEEE
ICDCS, 2006.

[8] M. Handley and A. Greenhalgh, “The case for pushing
DNS,” in Proceedings of ACM HotNets, 2005.

[9] D. Barr, “Common DNS operational and configuration
errors,” https://tools.ietf.org/html/rfc1912, 1996.

[10] A. Herzberg and H. Shulman, “Vulnerable delegation
of dns resolution,” in Proceedings of ESORICS, 2013.

[11] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson,
“Netalyzr: illuminating the edge network,” in Proceed-
ings of ACM IMC, 2010.

[12] K. Schomp, T. Callahan, M. Rabinovich, and M. All-
man, “On measuring the client-side DNS infrastruc-
ture,” in Proceedings of ACM IMC, 2013.

[13] J. Trostle, B. Van Besien, and A. Pujari, “Protecting
against DNS cache poisoning attacks,” in Proceedings
of IEEE NPSec, 2010.

[14] N. Megiddo and D. S. Modha, “ARC: A self-tuning,

low overhead replacement cache,” in Proceedings of
USENIX FAST, 2003.

[15] J. Jung, E. Sit, H. Balakrishnan, and R. Morris,
“DNS performance and the effectiveness of caching,”
IEEE/ACM Transaction on Networking, 2002.

[16] Bind, “https://www.isc.org/software/bind.”
[17] “CAIDA AS Relationships,” http://www.caida.org/

data/active/as-relationships/index.xml.
[18] J. Tomasik and M. A. Weisser, “aSHIIP: autonomous

generator of random internet-like topologies with inter-
domain hierarchy,” in Proceedings of IEEE MASCOTS,
2010.

[19] T. Bu and D. Towsley, “On distinguishing between in-
ternet power law topology generators,” in Proceedings
of IEEE INFOCOM, 2002.

[20] J. Tomasik and M. A. Weisser, “The inter-domain
hierarchy in measured and randomly generated AS-
level topologies,” in Proceedings of IEEE ICC, 2012.

[21] E. Cohen and H. Kaplan, “Proactive caching of DNS
records: Addressing a performance bottleneck,” in Pro-
ceedings of IEEE/IPSJ SAINT, 2001.

[22] J. Jung, A. W. Berger, and H. Balakrishnan, “Modeling
TTL-based Internet Caches,” in Proceedings of IEEE
INFOCOM, 2003.

[23] V. Ramasubramanian and E. G. Sirer, “The design
and implementation of a next generation name service
for the Internet,” in Proceedings of ACM SIGCOMM,
2004.

[24] A. Sharma, X. Tie, H. Uppal, A. Venkataramani,
D. Westbrook, and A. Yadav, “A global name service
for a highly mobile internetwork,” in Proceedings of
ACM SIGCOMM, 2014.


