
Impression Formation in Online Peer Production:
Activity Traces and Personal Profiles in GitHub

Jennifer Marlow
Human-Computer Interaction

Institute,
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA 15210
jmarlow@cs.cmu.edu

Laura Dabbish
Human-Computer Interaction

Institute & Heinz College
Center for the Future of

Work
Carnegie Mellon University

dabbish@cmu.edu

Jim Herbsleb
Institute for Software
Research, School of

Computer Science & Center
for the Future of Work

Carnegie Mellon University
jdh@cs.cmu.edu

ABSTRACT
In this paper we describe a qualitative investigation of
impression formation in an online distributed software
development community with social media functionality.
We find that users in this setting seek out additional
information about each other to explore the project space,
inform future interactions, and understand the potential
future value of a new person. They form impressions
around other users’ expertise based on history of activity
across projects, and successful collaborations with key high
status projects in the community. These impressions
influence their receptivity to strangers’ work contributions.

Author Keywords
Peer production; Collaborative software development;
Impression formation; Activity traces

ACM Classification Keywords
H.5.3. Group and Organization interfaces: Computer-
supported cooperative work.

INTRODUCTION
Open source software development is an example of
commons-based peer production where “uncertainty about
the quality of others is the rule rather than the exception”
[33]. In this environment, project owners often receive code
contributions from previously unknown others. They must
routinely form impressions about the expertise, background,
and credentials of these unknown contributors. In this
research we sought to understand how these impressions
form and how they influence receptivity to contributions.

Surprisingly little previous research has examined
impression formation in peer production environments.
Research on leadership and the promotion process in
Wikipedia touches on this issue, highlighting factors that
influence selection for management positions [8]. However,

these individuals are typically already active project
contributors. Impressions of expertise and suitability for
management are based on a history of interactions and
quality contributions. The question remains: when and how
do contributors form “first impressions” of each other?
And how do these impressions influence evaluations of
contributions?

At the same time, there is a rich history of research on
impression formation in offline contexts. This research
suggests that we quickly form judgments of strangers’
expertise and trustworthiness based on limited cues (such as
posture, dress, interaction style etc.). These judgments can
be biased and inaccurate in a variety of ways [6], but
inevitably impact how we view and interact with the
person. In the work context our social judgments change the
way we evaluate someone’s suitability for a task or their
work quality [10].

Online, a completely different set of cues are available. In
online social settings like discussion forums or dating sites
individuals form impressions of other participants based on
cues like screen names, email addresses, or profile pictures
[9, 11]. However, in an open online peer production
workspace instrumented with social media, there is the
potential to know about the entire collaborative world of
another user. This increased amount of information may
change the way we understand what someone else knows, is
good at, or what they are like as a person. Activity traces
have the potential to inform how we assess expertise and to
shape our interactions.

Recent work by Dabbish et al. [7] suggests that open source
developers make an extensive set of social inferences based
on activity traces generated by social media connected to
the work environment. For example, developers in their
sample inferred others’ commitment levels based on
recency and volume of code commit activity. Their study
also suggested these inferences influenced work outcomes.
Participants in their sample described using inferences
about individual’s attributes in evaluating incoming code
contributions or locating new knowledge on the site.
However, their study provided only a partial picture of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CSCW ’13, February 23–27, 2013, San Antonio, Texas, USA.
Copyright 2013 ACM 978-1-4503-1331-5/13/02...$15.00.

Source Work: Social Factors
in Software Development

February 23–27, 2013, San Antonio, TX, USA

117

types of inferences formed about individuals and their
subsequent influence on receptivity to contributions.

Our goal in this work was to develop a more detailed
understanding of impression formation in online peer
production. We build on the distributed social cognition
model [32], which posits that impression formation is an
active process influenced by behavior in a network or
group. This model shows that when forming impressions of
others, individuals engage in an active process that involves
the following steps: 1) choosing whether to obtain
information about the target; 2) choosing what information
is elicited, and 3) interpreting the elicited information to
form a person model (an integrated interpretation of what a
person is like.) The distributed social cognition model
provides general guidelines about how impression
formation occurs but doesn’t describe what the process
looks like in a specific setting. We address the following
research questions to understand how distributed social
cognition occurs in the online peer production setting:

RQ1: When do people seek out information about unknown
others in an online peer production community?

RQ2: What information do they use to form impressions?

RQ3: How do interpersonal impressions influence
evaluations of others’ contributions?

In order to address these questions, we conducted an
interview-based investigation of impression formation in
GitHub. We find that users in this setting seek out
additional information about each other to explore the
project space, inform communication interactions, and
understand the potential future value of a newcomer. They
form impressions around other users’ expertise based on
project and code-related cues, which combine with
interaction traces to help influence judgments about how to
work with new contributors in the context of receiving and
accepting pull requests (code contributions.) Our results
inform the design of social technology to support online
peer production communities engaged in knowledge-based
work.

BACKGROUND
Open source projects rely on contributions from a global
community of developers to perform various tasks ranging
from bug reporting to submitting feature requests and
contributing patches and code. The success of a project
depends on the proactive and constructive participation of
contributors to the project [30]. However, these outside
contributions may vary in quality depending on the skills
and expertise of the people who contributed them.
Diversity in technical abilities can be helpful to a project
because various types of contributions, from filing bugs to
suggesting features, can be made by people with a range of
expertise [30]. However, bug reports can waste time and
divert developers’ attention when they are misleading due
to contributors’ inexperience [19]. In both of these cases,
the potential benefits of receiving contributions from

inexperienced, unknown others may be outweighed when
editing their work becomes too time-consuming to deal
with, and this often results in the suboptimal outcome of
contributions not being accepted to the project [28].

Although we know that individuals engaged in open source
software development are continuously evaluating the
contributions of others, few studies have addressed exactly
when and why developers seek information about unknown
others, how impressions of these people are formed, and
what information is relied upon to infer an unknown
developer’s expertise, or other personal characteristics. In
the next section, we consider previous work on impression
formation and uncertainty reduction to inform our study of
this process in the peer production context.

Impression formation and expertise perceptions
Forming impressions of strangers can be thought of as an
uncertainty reduction process motivated by the goal of
understanding their behavior and predicting how they will
behave in the future [11]. When people are faced with a
previously unknown person, they can use direct social
interaction or information gathering to reduce uncertainty
about that person [26]. During the process, the seeker fills
out their mental models or mental representations of these
new unknown people that help him or her to make sense of
other people and their intentions, emotions and behaviors
[1]. These can be models about how they will react to
certain situations, but also what they know.

Research in sociology and social psychology describes
interpersonal impression formation in offline settings.
Goffman was among the first to describe the social
inference process, by which we interpret characteristics of
others based on appearance and public behavior [13]. Later
work in social psychology described the cognitive
processes associated with mentally placing individuals in
social categories [2]. This work showed that we use these
broad social categories to populate initially simplistic
mental models of an individual (otherwise known as
stereotyping) [24]. These initial models can be simplistic
and inaccurate, and only through direct experience can we
develop accurate impressions of an individual.

Limited research has examined how work-related
impressions form through technology. Research in
corporate settings has examined how individuals use
technology to explore what other people know or are good
at. For example, expertise finding is an important task in
the corporate domain e.g. [29] and many internal tools have
been developed to help people tag their own and others’
expertise [25]. Research on impression formation in
corporate settings has found that public profile information
influences impressions of work-related skills [25, 29]. This
previous research does not describe how the impression
formation process works. It is also not clear how the
presence or absence of organizational boundaries may
change this process.

Source Work: Social Factors
in Software Development

February 23–27, 2013, San Antonio, TX, USA

118

Open source software development is an example of a peer
production community fueled by volunteer contributors
interacting, via computer-mediated channels, from all over
the world. Research conducted in other peer production
settings, such as Wikipedia, has examined impression
formation in admin promotion decisions. This work
suggests editors attend to history of interaction and work on
the site in order to make decisions regarding promoting
people to admin status. The information that informs these
decisions includes evidence of civil interactions with others,
social networks and counts/types of edits made [8].
Similarly, Luther et al. [20] found that people desired
information about the quality of past work (through peer
ratings) as well as soft skills such as the personality of
unknown collaborators when deciding who to work with in
an online animation creation community.

Impression formation in software development
However, it is unclear to what extent the findings of
impression formation in Wikipedia or artistic collaborations
extend to evaluating non-managerial participants or to other
online peer production communities, partly due to the
nature of the domains. In open source development,
participants have a wide range of technical abilities and
skills, contribute to a project in different ways for different
reasons, and may be motivated by career goals or a desire to
build reputation and gain peer recognition [18]. Attribution
may be less of an issue in open source development than
observed in artistic communities [21, 22] in part because
projects are viewed as community property and also
because systems like GitHub automatically provide a record
of a project’s origins and contribution history.

Supporting awareness of teammates in distributed software
development to improve both task and social outcomes has
been an important research area. For example, Trainer et
al. [36] suggest that providing visual traces of work
interdependencies between team members can influence
trust in distributed team members and help people
understand whom to ask for assistance. Other work [37]
has also pointed to the ways in which tools such as
dashboards and activity feeds can help teammates get a
sense of the project and plan their tasks. Begel et al. [3]
point to the benefits of using social media at various stages
in a software team’s lifecycle, particularly with respect to
coordination and communication. For example, they point
to how social media can be used for effortless knowledge
sharing or to help groups infer best practices by observing
others’ work. However, most of these studies have focused
on ongoing, organized teams of developers within an
organization, unlike the more volunteer-based
collaborations that can occur in open source development,
where contributors can vary in the length of their
involvement and may not share a specific organizational
affiliation. Furthermore, in contrast to teams within
organizations, developers in open source settings often lack
guidance from a management hierarchy, and thus need to

self-coordinate and make autonomous decisions based on
whatever information is available to them.

Thus, there are gaps in our knowledge about the
mechanisms of impression formation in a peer production
environment such as open source where participants span
organizational boundaries and have extremely
heterogeneous backgrounds. Open-source development has
traditionally conducted much of the project-based
interaction on message boards or via email lists, where it
can be difficult to gain insight into who a person is or what
they are good at without repeated interactions. In this type
of large-scale online peer production community with
hundreds or thousands of members, individuals cannot
feasibly evaluate in detail every new contributor that
accesses a project or submits work. Open source developers
may rely heavily on stereotypes as a means of more
efficiently assessing people [24].

In this paper we add depth to the previous work by focusing
in greater detail on when people seek information about
each other, what information they use to make judgments
about others, and how they process it. We are specifically
interested in the role that social information plays in the
collaborative software development process, with a focus
on how this information (or lack thereof) influences the
openness to contributions.

Social information in the GitHub environment
In order to examine impression formation in peer
production, we focused our data collection on GitHub, a
software hosting website with over 2.7 million users
hosting over 4.5 million repositories as of December 2012
[12]. GitHub’s site design integrates social media
functionality directly with code management tools. Two
unique aspects of the GitHub environment set it apart from
other online communities in terms of personal information
available about project contributors.

The first unique aspect of GitHub is the presence of a
profile for each individual site member. Figure 1 shows a
typical user profile on the GitHub site. Profiles on GitHub
include: a) biographical data (such as the date they joined
the site and optional details about location, employer, etc.),
b) a list of their projects in public repositories (including
whether they own the project or forked it from another user,
the coding languages used, and a histogram of project
activity), as well as c) an “activity feed” that displays the
most recent actions they have performed on the site
(forking projects, watching other users or projects,
submitting pull requests, commenting on code, discussing
issues, etc.) Finally, the profile also highlights d) the
number of people that follow the profile owner as well as
the coders and projects that the profile owner has elected to
watch.

Similar to many other social networking sites, from the
profile users can interact with other users (message them),
view content they posted (their code repositories), or view
an “activity stream” of their recent actions and behaviors.

Source Work: Social Factors
in Software Development

February 23–27, 2013, San Antonio, TX, USA

119

Profiles offering this degree of visibility of individual
actions are not frequently and easily presented in other peer
production environments (e.g. Wikipedia). GitHub is
unique in this regard in both the software development and
crowd-based work domains.

The second unique aspect of the GitHub environment is that
coding is done publicly. Contributors can get involved in
pre-existing projects by forking a project, making their
changes, and then issuing a pull request to have their
change merged back into the main branch of the project.
The details of the work done by a contributor on the fork
are also visible to the project owner, making it easy to see
what a contributor is doing with the project.

The low effort associated with building on others’ work is
anecdotally associated with attracting more contributors to
a project [27]. This accessibility can provide projects with
many eager helpers, but project owners still have to
evaluate their potential contributions before they are
integrated into the master code base. At the same time, all
code activity on the site is associated with a user’s identity
and public profile, meaning a code contribution can be
vetted based on a developers entire past history of
contribution on the GitHub site.

In our study we aimed to learn exactly when developers
searched for more information about each other on the site,
how they used this information to form impressions, and
how it influenced their evaluation of code contributions.

METHOD
We conducted interviews with 18 GitHub users focusing in
detail on how they formed impressions of new people they
encountered on the site. Using information obtained
through the GitHub API, we identified GitHub users who
owned at least one open source project. Potential
interviewees who had publicly-displayed e-mail addresses

available on their personal profiles were contacted to see if
they would like to participate in the study. We did not offer
any incentives for participation.

We focused our recruitment on users with leadership
positions in popular projects, who managed incoming
contributions on a regular basis. These users were more
likely to have recent experience handling contributions
from strangers they hadn’t interacted with before. We
contacted GitHub users that owned at least one project with
six or more authorized “editors” (people who were
authorized to make changes without approval). The six
editor cutoff was chosen based on a descriptive analysis of
a subset of projects with activity in the 2 weeks prior to
February 20, 2011. This analysis showed that projects with
greater numbers of editors had more users watching them
and more pull requests received per day.

Of the 18 interviewees (17 male), twelve were based in the
U.S. and six were located in Europe. This sample was fairly
representative of the GitHub community, where around
80% of its users come from North America and Europe
[34]. Sixteen interviewees worked as professional software
developers or consultants and used GitHub to host personal
projects that they worked on in their spare time, while two
were PhD students. Most had been members of GitHub for
three to four years (based on the “joining dates” on their
profiles), with the newest member having joined just under
two years ago. Overall, interviewees were active site users
and the largest projects they owned had a median number of
59 project watchers, 21 project forks and 451 contributions.

Interviews lasted between 30 and 60 minutes. They were
conducted over Skype, with screen sharing enabled so that
both interviewer and interviewee could refer to GitHub
profiles and pages. The interviews followed a semi-
structured format.

Figure 1. Sample GitHub profile (profile features labeled a-d)

ⓐ

ⓑ

ⓓ

ⓒ

Source Work: Social Factors
in Software Development

February 23–27, 2013, San Antonio, TX, USA

120

To address RQ1, interviewees were first asked to identify
scenarios in which they sought out more information about
unknown others. Next, they were asked to go to these
people’s profiles and describe the information they had
focused on and inferences drawn from it. To further address
RQ2, each interviewee was asked to think aloud while
assessing the profiles of two or three others – some of
whom they knew well and others whom they did not know
well. Finally, to assess the influence of profiles on work
outcomes (RQ3), we also explicitly asked participants to
show us examples of pull requests (i.e. code contributions
they had received from others) that they had recently dealt
with and either accepted or rejected. They described the
process of receiving the pull request and walked through
how they had handled the request, including whether or not
they had consulted the profile of the requester.

Analysis
The analysis process was structured around the three stages
in the distributed social cognition model and the
corresponding research questions.

Our first research question focused on when people sought
personal information about others. To address this question,
we began by analyzing interview transcripts for instances in
which participants mentioned having consulted others’
profiles. Two researchers made affinity diagrams grouping
instances around common themes, discussing until
consensus was reached, and used these themes to develop
categories for impression formation scenarios. We used
qualitative analysis software (HyperResearch) to assist in
coding interviews and in aggregating similar themes. We
then repeated this analysis process for the other research
questions.

Our second research question was about which cues
individuals used in impression formation. To address this
question, we identified all instances of new impressions in
the transcripts. We then open coded these instances to form
themes around the cues attended to and the impressions
resulting from them.

Finally, to address our third research question on the impact
of impressions on the working process, we focused on one
of the most commonly mentioned themes in the first round
of coding: receiving new pull requests from unknown
others. We identified pull request interactions described by
the interviewees. Next, we generated a set of categories
around pull requests in terms of how the request was
handled and factors leading to this decision. At some times,
discussion was needed to determine the nature of some of
the pull request conversations (whether there was a conflict
or not) but this was resolved by matching what the
interviewees said about the conversation with the correct
segments of the visible discussion. Using focused coding
[5], we compiled a set of pull requests that demonstrated
these themes and then compared and contrasted specific
pull requests to create a flow diagram of how decisions to

accept pull requests were made, and how exposure to
profile elements factored in to this process.

RQ1: SCENARIOS FOR INFORMATION SEEKING
We first investigated when GitHub users sought out
personal information in order to learn more about another
member. Our analysis identified three scenarios where
users sought out more information about each other:

1) discovery, 2) informing interaction, and 3) skill
assessment. Each scenario had a different triggering event,
questions the user was trying to answer, and the outcome of
the search for personal information is summarized in Table
1.

Scenario 1: Using profiles for discovery
Discovery was the first scenario for investigating others.
This scenario involved exploring new people’s profiles in
the hopes of finding interesting projects they could use or
learn from. This meant an outcome of discovery was
staying up to date with the latest developments in open
source world, whether or not these were directly related to
the observer’s interests and expertise.

Discovery was triggered in two different ways. The first
involved encountering an unknown GitHub user with some
personal relevance (e.g. the person started watching or
forking the interviewee’s project or were working on a
friend’s project). They then looked at the profile of this new
person to learn about their other projects in case they were
potentially useful. They would browse through the person’s
projects seeking out common interests, or give projects they
had encountered before a second look because the owner
had contributed to their project.

The second trigger for discovery was encountering a new
project promoted on an external site (Twitter or
HackerNews) or on GitHub’s ‘featured projects’ page.
Interviewees described becoming aware of a new project
through these outlets and then exploring the profile of the
project owner to see if there were any other useful projects
they could use or learn from (P2, P5, P8, P10, P16). As one
interviewee put it:

“…they may have done something really interesting, and I’ll
look at their other projects that they’ve done and see if any of
those are things that I like.” (P8).

Discovery also supported learning about new coding
techniques and tools. By checking out someone who had
watched or forked their project and delving into what kinds
of things they were working on or consulting their personal
blogs, people learned about new tools and languages and
knew whom they could contact in the future for questions.
After viewing the blog of a user who had forked his project,
one participant described how this “serendipitous”
discovery helped him learn:

“[I learned] some very key words about natural language and
would I need that at some point, I know where to look and who
to contact, so somewhere in my brain, I have this guy
connected.” .

Source Work: Social Factors
in Software Development

February 23–27, 2013, San Antonio, TX, USA

121

Scenario 2: Informing interactions with new people
The second information-seeking scenario we identified
focused on informing interaction. This occurred when an
unknown person submitted a pull request (offering up a
code contribution to the other person’s project). Project
owners would investigate the profile and activity of the
person submitting the pull request to help them decide how
to interact with the person (were they receptive to criticism?
Did they argue with others?). This was most likely to
happen when the project owner had the time and attentional
resources to quickly look at the user’s profile or when they
had encountered the person on more than one occasion.

Because GitHub enables unknown people to fork a project
without interacting with the owner, project owners often
found themselves receiving pull requests from people they
did not know. Owners in our sample were compelled to
examine the profiles of these unknown others in
conjunction with examining their code to understand why
they were interested in the project or submitting a certain
change. Learning more about a person informed how they
would respond to this person and start building a working
relationship: As one interviewee put it, “I want to know you
before I help you” (P6).

Scenario 3: Forming expectations about skills
The third scenario for seeking information about other
people was skill assessment. This involved investigation
into a contributor’s skills and abilities after they submitted a
pull request to a project (P3, P6, P14, P15). Knowing what
a person did helped owners to make sense of their abilities
or competence as a coder, that is “who they are and what do
they do”(P3). They looked to see if a person had
contributed to other projects to understand in what capacity
they might be able to help on their own project (or how
much assistance or extra effort accepting their contribution
would require, based on their technical abilities.)

Often times this kind of skill assessment did not occur until
there had been multiple interactions with a given individual
(P10, P12). As one developer explained, repeat
contributions to a project made a contributor stand out, and
triggered their interest in the face of extreme workload:

“for me there’s so many different people I interact with on the
Internet because my projects are pretty popular so that I just
don’t have the mental capacity to know each person who I
interact with. But let’s say if I get another bug from him and

then maybe he makes other comments in the future, at some
point he’ll cross a threshold where I’m like okay, who is this
person? What does he or she do?” (P12).

Dabbish et al. [7] found these repeat contributors were often
recruited for more central project involvement, e.g.
assigned tasks to complete or bugs to fix.

RQ2: TRACES AND IMPRESSION FORMATION
Our second research question focused on how developers
used visible cues in the work environment to form
impressions about others. Our analysis identified three
categories of impressions formed based on different activity
information. Table 2 presents an overview of these
categories of impressions, and the types of cues that were
used to derive these impressions:

Impression category Cues

C1. General coding ability

Amount of activity, frequency of
commits, number of projects
owned vs. forked, length of time
on site, languages used

C2. Project-relevant skills
Types of visible activity (coding
vs. discussing), specific
languages used

C3. Personality and
interaction style

Past discussion posts and
threads

Table 2. Impression categories and associated cues

General coding ability
Interviewees often made stereotypical judgments about a
user’s coding ability by quickly scanning the recent activity
(or lack thereof) visible on the profile. They mentally
categorized other developers as one of three expertise-based
personas: newcomers, novices, or competent peers.

Complete newcomers were distinguished by a lack of
projects or any activity on their profiles, as well as a recent
joining date that corresponded with their contribution. The
lack of projects or contributions to other projects made it
difficult to infer expertise or intentions. As one interviewee
said:

“kind of hard to tell how good he is, actually. He hasn't
contributed to anything else” (P14).

Scenario Trigger Motivating questions Outcome

Discovery
(mentioned by 10
interviewees)

T1. Receiving a new
follower

M1. Curiosity: What cool things
does this person do? What is their

connection to me?

Find new projects, exposed to new
information

Informing interaction
(mentioned by 10)

T2. Receiving a pull
request

M2. Are they a nice person? Are
they worth helping?

Decision of how to act towards the
new person based on impressions

of interaction style and interests

Forming expectations
about skills
(mentioned by 6)

T2. Receiving a pull
request from unknown

person

M3. Who are they? Why are they
interested in what I do?

Assessment of what they do for
my project, how they can
contribute based on skills

Table 1. Scenarios for interpersonal information seeking

Source Work: Social Factors
in Software Development

February 23–27, 2013, San Antonio, TX, USA

122

Empty profiles also led to conclusions that the person
wasn’t a committed member of the site or only complained
but never coded. One participant mentioned that seeing a
person with an empty profile led him to characterize them
as a certain “type of person” who signed up to report bugs
but didn’t actually contribute any code themselves. These
people predisposed him to expect a certain type of
contribution:

“you can usually tell when you go to a profile and they don't
have any projects, and they just sign up to communicate with
developers, basically. Yeah, it's a bit more frustrating
because… sometimes you get bad bug reports or duplicated bug
reports, and people who report them are-- I wouldn't say
they're-- not negative, but they're-- yeah-- complaining, I would
say.” (P13).

Novice or inexperienced users, in contrast, could potentially
have started their own projects in addition to forking those
of others. However, the kinds of projects that they chose to
work on or the types of projects they had started themselves
conveyed a lack of expertise. In the former case, one
interviewee explained:

“Mongo DB is a database that’s relatively well known for
having a lot of fundamental architectural flaws and
performance problems. The fact that he may choose to use this
thing, again suggests to me that he’s not a very experienced
developer.” (P7).

Finally, competent peers were judged by the breadth and
depth of the projects they owned, and the coding languages
they used. As one interviewee described, the languages on a
contributor’s profile demonstrated ‘geek cred’:

“He seems like a quite talented coder. I mean, I see Pascal, I
see Erlang, and yeah, he used VI, so, I mean, he validates his
geek cred for all those things. So yeah, that would give me a
pretty good first impression on the person, regarding the way
he knows how to code” (P4).

Project-relevant skills
Developers also formed impressions about specific areas of
expertise based on a contributor’s visible activity. These
impressions included the types of work a person was best
suited to doing or preferred to do (e.g. did they spend more
time writing code or editing and managing projects?)

Activity traces led project owners to form expectations
about the ways a person could assist their project. One
interviewee highlighted how the portfolio of languages on a
user’s profile showed what they might be able to contribute
to his projects (which were written in C code):

“if someone forks and all their other projects are web based
PHP stuff, well you can sort of guess that you won’t be getting
any code patches from them. But if someone writes something
and you see that their profile’s all really hardcore C libraries,
and C stuff, then you can sort of expect them to actually help
out and write good C code, for example.” (P3).

Personality judgments
Interviewees also described inferring someone’s personality
based on how they interacted with others. They used

communication activity visible in a person’s recent activity
feed (such as recent comments a user had made or
discussions they had been involved in) to get a sense of
what a person was like to work with. Arguments or ‘rude’
postings revealed negative personality traits such as
arrogance or uncooperativeness, or led to the conclusion
that someone was difficult to work with. For example, one
interviewee talked about inferring willingness to help
through exchanges with others:

 “I think you can kind of look at how they respond in threads, if
they're arrogant or if they're trying to be helpful, it does show
through a little bit in threads” (P15).

RQ3: IMPACT OF IMPRESSIONS ON WORK OUTCOMES
Our third research question focused on how these
impressions of new contributors affected the working
process. In order to address this question, we focused on
the pull request evaluation process. Submitting a pull
request involves proposing a code contribution to a project
which can be accepted, rejected, or commented on and left
open. The pull request process is important because it is the
primary way open source projects attract new contributors
and extend their code base. Our understanding of this
process was based on the interviewee’s retrospective
thinkalouds of recent pull request interactions, which were
publicly archived on pages linked to the pull requests.

In the open source software environment, project success is
influenced by two key factors, which informed our analysis.
First, code submitted to projects should be of high quality
and not degrade the performance of the project by
introducing bugs. It should also be able to be accepted with
a minimum amount of effort required from the project
owner, because in the open source environment project
owners are limited in the amount of their own time they can
devote to maintaining their projects – therefore, efficiency is
valued. Relationship outcomes are also important to project
success, because an owner needs to encourage participation
from others in order to maintain the vitality of a project.
Relationship outcomes suggested by Hackman [14] include
satisfaction with the relationship, learning from distant
colleagues, and desire to work together in the future. These
positive outcomes are most likely to be maximized in the
absence of relationship conflict, when developers interact in
a polite and cordial manner. In light of these factors
influencing open source software project success, we
focused in our analysis on the following outcomes
associated with a pull request interaction: whether the
contribution was accepted, how long the exchange took,
and whether conflict arose in the process.

Pull request case studies
We identified ten recent pull requests interviewees had
received from contributors they had not directly interacted
with before. These pull request interactions varied in terms
of whether or not the project owner looked at the profile of
the contributor, the nature of the code being submitted, the
perceived expertise of the contributor, the amount of
discussion surrounding the pull request, and two outcomes:

Source Work: Social Factors
in Software Development

February 23–27, 2013, San Antonio, TX, USA

123

1) whether or not the pull request was accepted, and 2) the
degree to which negative interpersonal interactions were
avoided/managed. By comparing and contrasting the ten
cases, we gained greater insight into factors that led to a
pull request being accepted, and found instances in which
impressions based on profile material influenced the
attitude of the owner towards the contributor.

Accepted versus rejected pull requests
Our comparison of accepted versus rejected pull requests
suggested that uncertainty was a critical factor in the code
contribution review process. Owners were more certain
about the value of simple changes that addressed features
the owner had wanted to add, were small in scope, or fixed
a known bug. Owners were less uncertain about the value
of code that was suggesting a larger change, introducing a
new feature, or conflicting with other existing functionality.

Code that was accepted “as is” was often either
straightforward and easily verifiable, or accepted as a
matter of principle (A1-A5). Few comments were involved.
Declined pull requests, on the other hand, were not
immediately accepted although they had the potential to be
if certain fixes were made (D1-D5). These requests
involved a great deal more uncertainty regarding the
implications of accepting the change. These pull requests
required some back-and-forth discussion between owner
and contributor to explain the reasons why the code
couldn’t be automatically accepted or would cause
problems and then to negotiate a final outcome.

When the value of submitted code was more uncertain,
project owners often engaged in an assessment that
involved weighing both code-based factors (e.g. perceived
value of the code) and person-based factors (e.g. the
perceived value of encouraging continued and sustained
participation in the project by the new contributor.) For
example, the cost of working with someone to fix their code
so that it could be accepted (which could be high in cases
where contributors were newcomers or novices) was
weighed against the potential benefits of helping to mentor
a new project member and potentially gain help in the
future, or the risks of being annoyed by time-consuming
arguments with a novice about why their contribution was
not acceptable. Figure 2 summarizes the pull request
acceptance decision process.

Impressions influencing mentorship : Examples
In this section we describe two of the five declined pull
requests (D3, D4) where the owners reported having
examined the profile of the contributor in the process of
assessing the code. In both of these cases, the code being
submitted was problematic in that it had stylistic issues,
followed poor practices, and generally would require
additional time and work by the project owner to fix to the
point that it could be incorporated into the main branch of
the project. However, the impressions they formed from

glancing at the contributors’ profiles influenced their
willingness to accommodate the contributor’s efforts.

When the owner of D4 consulted the contributor’s profile,
he discovered the contributor was a complete newcomer
with no previous history. He described his subsequent
reaction to this as:

“if I see this is their first pull request, I'm more like, ‘Oh, thank
you. Very nice.’ And then try to be more gentle or…more
friendly” (P14).

The results of this impression were that as a result, he
shaped his reaction to the code (which followed a poor
practice of containing many different commits in one) to be
more tolerant. In the end, the code that was submitted later
proved to have some problems, so it was not accepted;
however, the owner handled the issue in a way that
illustrated his desire to encourage rather than sharply
criticize someone whom he recognized to be a newcomer.

Similarly, in D3, the project owner received a pull request
that was “a bit problematic in the sense that it gives me a
lot of work to accept a patch like this” (P3). Since his
assessment of the contributor, based on profile activity and
interactions through the pull request was of “an intelligent
person who has not been coding too long, does not have too
much experience in this,” he realized that this person was
“a good person to focus but needs hand-holding.” For this
reason, the owner was willing to look over his work, but
rather than outright rejecting it he planned to look it over at
a later time.

Impression accuracy: Examples
While we saw evidence of project owners quickly forming
impressions of new contributors and using these to frame
their interactions with these people, an associated question
was to what extent these impressions were accurate. In the
six cases where project owners elected to consult the new
contributors’ profiles, two users had no evidence of activity
on their profiles, one was assessed as a novice user, and
three were deemed to be competent peers.

In four instances, participants made judgments of others’
abilities without having consulted their profiles beforehand
(or consulted them after the pull request interaction had
occurred.) In three of these four instances, (D1, D2, D5),
the default assumption made without looking at the users’
profiles was that they were new to GitHub or to coding.
The owner of D2 described the contributor as: “kind of a
junior level experience guy, because anyone else would realize
that these kind of changes are going to have a dramatic impact on
this kind of project if they were more experienced.” (P7).

However, the sender of this pull request was one of our
interviewees as well, who had been a professional
programmer for over ten years and owned a popular open
source project. In this case, had the project owner looked at
his profile, he may have formed a different and more
positive impression of the contributor’s abilities.

Source Work: Social Factors
in Software Development

February 23–27, 2013, San Antonio, TX, USA

124

DISCUSSION
Our analysis identified three key information-seeking
scenarios on GitHub: discovery, informing interaction
around contributions, and expertise assessment. Discovery
was driven by a desire to stay up to date on new projects,
and learn about new people with similar or complementary
skills, and did not involve direct interaction.

Developers also sought out more information on others in
response to code contributions. They sought out
information about other developers’ interaction style and
interest to inform how they communicated with them. They
also formed ability and expertise impressions based on
profile information. These impressions influenced the way
they handled project contributions moreso when the value

of submitted contributions was uncertain, the contributor
was unknown and future interactions were not expected.
Owners with a stronger tendency for helping would use this
information to inform mentoring style interactions to
improve a contribution. Bad contributor attitudes combined
with low perceived skill and ability led to annoyance,
inflexibility, long arguments, and delays.

It is well known that conflict in open source software
development often stems from interpersonal matters related
to expertise and power. Problems arise when there is
mismatched expertise and different knowledge levels [4],
newcomers make arguments that are not defended with
rationale [17], or people rudely advocate for features that
have already been rejected [28]. These types of issues were

Figure 2. Flow diagram of the pull request decision-making process

Source Work: Social Factors
in Software Development

February 23–27, 2013, San Antonio, TX, USA

125

seen in many of the example pull request negotiations we
elicited. Often, the project owners tended to assume that
when unknown contributors sent something for the first
time, that they possessed inferior skills to the owner. This
corresponds with the assertion made by Oreg & Nov [23]
that contributors need to have a reasonable level of
expertise and to have this expertise made public in order for
them to make a creditable contribution.

The decision of what information to display about users
may depend on a site’s goals and the behavior it desires to
promote (for example, some sites like Wikipedia minimize
visible information about contributors in an attempt to
create a level playing field [35].) However, when direct
cues are absent, it becomes difficult to identify authors and
evaluate their expertise. Our work suggests that detailed
personal information can shape work outcomes in a peer
production setting, particularly for complex contributions.

Design Implications
Like other peer production sites, interactions on GitHub
often center around work contributions from unknown
others. Our results show that the impressions formed of
these users (whether based on activity traces such as profile
cues or not) can influence a project owner’s receptivity to
contributions. In most of the cases where people reported
consulting others’ profiles, they perceived others as skilled
when there was evidence of activity on well-known
projects. Project owners may be less receptive to
newcomers and developers perceived as unskilled.

Our results suggest that the design of peer production work
environments can facilitate more accurate impression
formation. First, sites can more accurately portray
credentials of a newcomer who may in fact be quite skilled
but has not yet built up a portfolio of work on the site. As
Luther et al. [20] state, a contributor cannot improve their
reputation without establishing an identity and ensuring that
the history of contributions is linked to that identity.
Finding ways of enhancing cues or links to other credentials
or past work may help talented newcomers establish
credibility and avoid biased impressions of their skills.

The design of contributor profiles can also help less
experienced contributors gain respect from others,
particularly given the importance of reputation in peer
production environments [18]. A profile cue summarizing
relative expertise like Halfaker et al.’s [15] NICE system in
Wikipedia, could encourage awareness of and civility
towards new editors. For users with some previous activity
on GitHub, it could also be useful to show a visual
summary of the history of their pull requests submitted to
other projects along with an indication of how many of
these were accepted or rejected. Such a statistic could help
project owners quickly determine whether they will need to
spend extra time mentoring or reviewing a person’s
contributions.

Contributor profiles can also provide better access to
communication interaction histories. Our results suggest

seeing how someone communicated with others is a useful
means of assessing contributor soft skills. This interaction
style information may support more effective peer
production collaboration across a variety of domains [8,
20]. However, representativeness of interactions displayed
is an important design consideration. Activity feeds may
bias perceptions of interaction styles since only the most
recent behaviors (which may or may not include comments)
appear on a person’s activity feed on their profile. This
means it is possible that an isolated comment may be taken
out of context or misconstrued.

Contributor profile design should be optimized for
efficiently visualizing or summarizing the information for
quick perusal. One of the most frequently mentioned
reasons why project owners did not consult contributors’
profiles was because doing so was simply too time-
consuming and inefficient. Because of the site design, they
had to scroll through a long list of projects and look at
many different icons and cues to determine who owned
which projects, what languages they worked in, and so
forth. Better organizing this information or summarizing it
at the top of the page (for example, a summary of languages
and number of projects owned) could reduce the burden of
looking at profiles of more experienced members and help
more people to quickly assess their expertise and possible
contributions.

These design issues around representing peer production
contributors can apply to a range of communities.
Succinctly summarizing expertise based on behavioral data
and incorporating evidence of social interactions may
support more nuanced impressions and reduce bias. In any
type of peer production site where a person shares their
work for others to build on, dealing with contributions from
others is necessary and important. Our results show that
impressions can influence receptivity to these contributions.

Limitations and future work
In this study we specifically focused on the project owners’
assessments of the contributors submitting pull requests. In
all cases except for one, it was not feasible to also interview
the contributors involved in the pull request exchange to
understand the situation from their side (often because they
did not provide contact information on their profiles or
were located in time zones that made it difficult to find a
time for a synchronous interview.) Therefore, our findings
do not apply to how contributors form impressions of
project owners (however, this perspective has been to some
extent covered by [28].)

We also had a limited number of pull request case studies
from the interviews that met our criteria of being sent from
previously unknown people (many of the other pull requests
mentioned in the interviews were from people the
interviewees knew and had worked with previously.) In
future work, we plan to collect a larger number of instances
where the pull request sender is unknown and use these to
confirm or modify the model proposed here.

Source Work: Social Factors
in Software Development

February 23–27, 2013, San Antonio, TX, USA

126

Finally, some of our findings may be unique to GitHub and
the OSS community. These communities have their own
norms, e.g. “open source” mentality emphasizes mentoring
new members in a way that other communities may not
share as strongly. Future work should examine the extent to
which our results generalize to other open source
communities and other peer production settings.

CONCLUSION
We found that open source software developers use detailed
traces of an individual’s project-related activities for
discovery and learning. This information also informs their
decisions on how to interact with new, unknown
contributors to their projects. Impressions about future
potential may increase receptiveness to complex
contributions. Our observations suggest that interactions
preceded by interpersonal information gathering had more
positive outcomes (where social relations were prioritized
over efficiency.)

Our results inform the design of future systems to support
distributed, computer-supported work. The impression
formation process may be expedited by providing more
accessible cues about expertise that incorporate activity in
other settings. More accurate impressions of expertise and
ability may be more critical where there is a perceived gap
in skill level between the owner and contributor and the
technical merits of the work are unclear and up for debate.

ACKNOWLEDGMENTS
This work was supported by NSF grants IIS-1111750,
SMA-1064209, OCI-0943168, a grant from the Center for
the Future of Work at Heinz College, Carnegie Mellon
University, and an NSF Graduate Research Fellowship.

REFERENCES
1. Antheunis, M. L., Valkenburg, P. M., & Peter, J.

Getting acquainted through social network sites:
Testing a model of online uncertainty reduction and
social attraction. Comp. in Human Beh., 26(1), (2010),
100–109.

2. Baldwin, M.W. Relational schemas and the processing
of social information. Psychological Bulletin 112, 3
(1992), 461-484.

3. Begel, A., DeLine, R., & Zimmermann, T. Social
media for software engineering. Proc. FSE/SDP
workshop on Future of software engineering research,
(2010), 33–38.

4. Bettenburg, N., Just, S., Schröter, A., Weiss, C.,
Premraj, R., & Zimmermann, T. What makes a good
bug report? Proc. ACM SIGSOFT International
Symposium on Foundations of software engineering,
(2008), 308-318.

5. Charmaz, K. Grounded theory as an emergent method.
Handbook of emergent methods, (2008), 155–170.

6. Chen, S., Shechter, D., and Chaiken, S. Getting at the
truth or getting along: Accuracy-versus impression-

motivated heuristic and systematic processing. Journal
of Personality and Social Psychology 71, 2 (1996),
262-275.

7. Dabbish, L., Stuart, C., Tsay, J., & Herbsleb, J. Social
coding in GitHub: transparency and collaboration in an
open software repository. Proc. CSCW, (2012), 1277–
1286.

8. Derthick, K., Tsao, P., Kriplean, T., Borning, A.,
Zachry, M., & McDonald, D. W. Collaborative
sensemaking during admin permission granting in
Wikipedia. In Online Communities and Social
Computing (Vol. 6778), (2011), 100-109).

9. Donath, J.S. Identity and deception in the virtual
community. Communities in cyberspace, (1999), 29–
59.

10. Flynn, F.J., Chatman, J.A., and Spataro, S.E. Getting to
know you: The influence of personality on impressions
and performance of demographically different people
in organizations. Administrative Science Quarterly 46,
3 (2001), 414–442.

11. Gibbs, J. L., Ellison, N. B., & Lai, C. H. First comes
love, then comes Google: An investigation of
uncertainty reduction strategies and self-disclosure in
online dating. Communication Res., 38(1), (2011), 70–
100.

12. GitHub.com, https://github.com/home [Accessed
December 6, 2012].

13. Goffman, E. The presentation of self in everyday life.
New York: Anchor Books, 1959.

14. Hackman, J.R. Groups That Work (and Those That
Don't): Creating Conditions for Effective Teamwork,
San Francisco, CA: Jossey-Bass, 1990.

15. Halfaker, A., Song, B., Stuart, D. A., Kittur, A., &
Riedl, J. NICE: Social translucence through UI
intervention. Proc. 7th International Symposium on
Wikis and Open Collaboration, (2011), 101–104.

16. Hamilton, D.L., Katz, L.B., and Leirer, V.O. Cognitive
representation of personality impressions:
Organizational processes in first impression formation.
Journal of Personality and Social Psychology 39, 6
(1980), 1050-1063.

17. Ko, A. J., & Chilana, P. K. Design, discussion, and
dissent in open bug reports. Proc.iConference, (2011),
106-113.

18. Lerner, J., & Tirole, J. Some simple economics of
open source. The Journal of Industrial Economics,
50(2), (2002), 197–234.

19. Lotufo, R., Passos, L., & Czarnecki, K. Towards
Improving Bug Tracking Systems with Game
Mechanisms. GDSLab Technical Report, University
of Waterloo, 2011.

Source Work: Social Factors
in Software Development

February 23–27, 2013, San Antonio, TX, USA

127

20. Luther, K., Caine, K., Ziegler, K., & Bruckman, A.
Why it works (when it works): success factors in online
creative collaboration. In Proc. GROUP, (2010), 1–10.

21. Luther, K., Diakopoulos, N., & Bruckman, A. Edits &
credits: Exploring integration and attribution in online
creative collaboration. Ext. Abs. CHI, (2010), 2823–
2832.

22. Monroy-Hernández, A., Hill, B. M., Gonzalez-Rivero,
J., & others. Computers can’t give credit: how
automatic attribution falls short in an online remixing
community. In Proc. CHI, (2011), 3421–3430.

23. Oreg, S., & Nov, O. Exploring motivations for
contributing to open source initiatives: The roles of
contribution context and personal values. Comp. in
Human Beh., 24(5), (2008), 2055–2073.

24. Quinn, K. A., Mason, M. F., & Macrae, C. N.
Familiarity and person construal: Individuating
knowledge moderates the automaticity of category
activation. European Journal of Social Psychology,
39(5), (2009), 852–861.

25. Raban, D. R., Danan, A., Ronen, I., & Guy, I. (2012).
Impression formation in corporate people tagging. In
Proc. CHI, (2012), 569–578.

26. Ramirez A., Walther, J. B., Burgoon, J. K., &
Sunnafrank, M. Information-Seeking Strategies,
Uncertainty, and Computer-Mediated Communication.
Human Communication Res., 28(2), (2002), 213–228.

27. Rao, V. GitHub and the democratization of
programming.
http://www.forbes.com/sites/venkateshrao/2012/03/27/
github-and-the-democratization-of-programming/
[Accessed 18 April 2012]

28. Rigby, P. C., & Storey, M. A. Understanding broadcast
based peer review on open source software projects.
Proc. ICSE, (2011), 541–550.

29. Shami, N. S., Ehrlich, K., Gay, G., & Hancock, J. T.
Making sense of strangers’ expertise from signals in
digital artifacts. Proc. CHI, (2009), 69–78.

30. Sinha, V. S., Mani, S., & Sinha, S. Entering the circle
of trust: developer initiation as committers in open-
source projects. Proc. of the 8th working conference on
Mining software repositories, (2011), 133–142.

31. Skeels, M., & Grudin, J. When social networks cross
boundaries: a case study of workplace use of facebook
and linkedin. Proc. GROUP, (2009), 95–104.

32. Smith, E. R., & Collins, E. C. Contextualizing person
perception: Distributed social cognition. Psych. Rev.,
116(2), (2009), 343-364.

33. Stewart, D. Social status in an open-source
community. American Sociological Review, 70(5),
(2005), 823–842.

34. Takhteyev, Y., & Hilts, A. Investigating the geography
of open source software through GitHub.
http://www.takhteyev.org/papers/Takhteyev-Hilts-
2010.pdf

35. Tausczik, Y.R. and Pennebaker, J.W. Predicting the
perceived quality of online mathematics contributions
from users’ reputations. Proc. CHI, (2011), 1885–1888

36. Trainer, E. H., Al-Ani, B., & Redmiles, D. F. Impact
of collaborative traces on trustworthiness. Proc. of the
Workshop on Cooperative and human aspects of
software engineering, (2011), 40–47.

37. Treude, C., & Storey, M. A. Awareness 2.0: staying
aware of projects, developers and tasks using
dashboards and feeds. Software Engineering, 2010
ACM/IEEE 32nd International Conference, 2010, 365–
374).

Source Work: Social Factors
in Software Development

February 23–27, 2013, San Antonio, TX, USA

128

