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ABSTRACT

The recently proposed concept of publicly verifiable logs is a promis-
ing approach for mitigating security issues and threats of the cur-
rent Public-Key Infrastructure (PKI). Although much progress has
been made towards a more secure infrastructure, the currently pro-
posed approaches still suffer from security vulnerabilities, ineffi-
ciency, or incremental deployment challenges.

In this paper we propose PoliCert, a comprehensive log-based
and domain-oriented architecture that enhances the security of PKI
by offering: a) stronger authentication of a domain’s public keys,
b) comprehensive and clean mechanisms for certificate manage-
ment, and c) an incentivised incremental deployment plan. Surpris-
ingly, our approach has proved fruitful in addressing other seem-
ingly unrelated problems such as TLS-related error handling and
client/server misconfiguration.

Categories and Subject Descriptors

K.6.5 [MANAGEMENT OF COMPUTING AND INFORMA-

TION SYSTEMS]: Security and Protection—Authentication; C.2.0
[COMPUTER-COMMUNICATION NETWORKS]: General—
Security and protection

General Terms

Security

Keywords

Public-Key Infrastructure; SSL; TLS; certificate validation;
security policy; public-key certificate; public log servers

1. INTRODUCTION
Certificate authorities (CAs) in today’s TLS PKIs are endowed

with great authority. As trusted parties, they sign certificates used
by clients all over the world to authenticate servers and establish
HTTPS connections. Browser and operating system vendors also
hold significant power in the TLS infrastructure, since they manage
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the list of trusted root CA certificates which serve as the roots of
trust for certifying TLS certificates.

Though these parties wield significant authority in the TLS ecosys-
tem, their trustworthiness has been tarnished by several recent events.
Operational mistakes, social engineering attacks, and governmen-
tal compulsion [28] have resulted in the issuance of fraudulent TLS
certificates for many high-profile sites. In these cases, adversaries
can impersonate domains to clients by performing active man-in-
the-middle (MitM) attacks, intercepting secure connections and steal-
ing potentially sensitive information.

In an effort to address this problem, proposals such as Certifi-
cate Transparency [24] have sought to increase CA accountability
by using public logs to monitor CA behavior. Like CAs, logs are
trusted parties that contribute towards certifying the validity of a
certificate. Public logs record certificates issued by CAs and pro-
vide proofs that a certificate has been observed, thus making all cer-
tificates (even maliciously-issued ones) visible for public scrutiny.

However, there is a disconcerting imbalance of power in the TLS
infrastructure. Domain owners have little control over how their
own TLS certificates are used and verified. In log-based proposals,
a valid CA signature and a proof from a public log are enough to
convince a client that a certificate is authentic. Domains cannot
specify any criteria of their own that their certificates must fulfill.
In fact, browser vendors often set the majority of such criteria, by
specifying root CAs whose keys anchor certificate chains and by
determining how errors in the TLS handshake are handled (such as
through a soft failure, which allows the user to proceed anyway, or
a hard failure, which does not).

Additionally, CT and other log-based proposals [4, 20, 27] suf-
fer from several inefficiencies. While proofs from public logs can
be efficiently generated and validated, some of these proposals as-
sume or explicitly argue for the global coordination of logs in or-
der to ensure that they have a consistent view of valid certificates.
This global coordination is inefficient because certificate issuances
and revocations are frequent, and because it requires that each do-
main only have a single active certificate at a time. Some of these
proposals also do not efficiently handle events such as certificate
revocation, key loss, or key compromise.

To address these inefficiencies and, in particular, the imbalance
of control in today’s TLS PKI, we design and propose PoliCert, a
log-based proposal that allows domains to define policies govern-
ing the usage of their TLS certificates. These policies, called sub-

ject certificate policies (SCPs), provide domains with much greater
control over their certificates by allowing them to specify param-
eters such as trusted CAs, update criteria, and error handling that
their certificates must follow, and also gracefully handle the loss or
compromise of a private key. Additionally, parameters in SCPs are
inheritable and can be applied to subdomains, allowing more ex-



pressive certificate policies and providing some resilience against
misconfiguration in subdomains.

We also propose a design for multi-signature certificates (MSCs),
which allow multiple CA signatures on a certificate and serve as
the format for encoding SCPs. This feature is not part of the X.509
standard, but provides stronger authentication of a subject’s public
key and enhances resilience to CA compromise. Since MSCs con-
sist of a set of X.509 certificates and extensions, our design requires
very little change to the existing certificate standard.

To enable efficient monitoring, updates, and revocation of certifi-
cates and policies, we propose a system of public logs which track
both MSCs and SCPs. These logs leverage Merkle Hash Trees
(MHTs) to store and generate cryptographic proofs for certificates,
revocations, and policies. Proofs in PoliCert can also prove the
absence of MSCs and SCPs from the log in order to prevent ad-
versaries from suppressing this information and forging fake cer-
tificates or policies. This property also secures an incremental de-
ployment of PoliCert.

Logs maintain separate databases for MSCs and SCPs. This sep-
aration allows us to mitigate inefficiencies in previous proposals.
Because a valid and logged MSC that meets the criteria specified
in the SCP is considered authentic, logs only need to maintain a
globally consistent view of domains’ SCPs. This means that do-
mains can only have a single active policy at any given time (which
is reasonable), but can have as many active certificates as they wish.

To summarize, this paper makes the following contributions:

• An argument for the use and benefits of subject certificate poli-
cies (§4.1).

• A proposed format for multi-signature certificates, which allow
an arbitrary number of independent CA signatures on a certifi-
cate (§5.1).

• A design of subject certificate policies, which specify how and
which certificates of a domain or subdomain can be used (§5.2).

• Protocols for verifying the authenticity and checking the revo-
cation status of an MSC using publicly-auditable logs (§6).

• A full implementation, and evaluation of the security and effi-
ciency of our protocols (§7, §9).

2. PROBLEM DEFINITION
Our main objective in designing PoliCert is to explore the ef-

fects of enabling domains to define their own certificate compli-
ance policies while making minimal changes to the current PKI
environment. In doing so, we endeavor to provide a mechanism
for enforcing expressive and extensible policies governing the us-
age of TLS certificates. We aim to allow domains to specify criteria
such as CAs authorised to sign certificates for a domain, parameters
for updating certificates and policies, and error handling behavior
in TLS handshakes. Furthermore, we want to efficiently handle
events such as certificate revocations, policy updates, and loss or
compromise of a private key.

Our adversary’s goal in this setting is to impersonate a website to
a client in order to perform a MitM attack. To this end, the adver-
sary may be able to compromise trusted parties by gaining access
to their private keys and signing messages using these keys. How-
ever, this access may be short-term, such as the ability to sign a
single message or certificate, and we assume that the adversary is
not able to gain long-term access to a threshold number of trusted
parties. We further assume that the adversary cannot mount other
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Figure 1: Merkle hash tree with bold nodes proving the exis-

tence of d2 in the tree. The symbol ‖ denotes concatenation and

H(·) is cryptographic hash function.

attacks (such as social engineering attacks) on clients, and can-
not break cryptographic primitives such as public-key algorithms
or hash functions.

In this paper we assume that browsers are kept up-to-date, that
their lists of root CA and log certificates are authentic, and that the
various browser vendors reach a consensus of the security level of
various cryptographic algorithms. We also assume that public logs
and auditors (§4.2) are highly available. Finally, we assume that all
parties are time synchronized within a few minutes.

The main properties we want to achieve are:

1. Resilience to compromise of trusted parties. Unless more than a
threshold number of all public logs are compromised, it should
be impossible for an adversary to impersonate a domain by forg-
ing a certificate or policy that would be accepted by clients.

2. Efficiency of certificate update and revocation. It should be pos-
sible to update or revoke a domain’s certificate within hours of
the domain requesting the action.

3. Balanced control among CAs, logs, browsers, and domains.
All parties should be able to contribute towards determining
whether or not a domain’s certificate is valid, whether through
signing information or specifying parameters for connection es-
tablishment.

4. Interoperability with the current CA business model. To fa-
cilitate deployment of PoliCert, CAs should not have to change
their business model significantly from their current operations.

3. BACKGROUND AND RELATED WORK

3.1 MHTs and Presence/Absence Proofs
A Merkle hash tree (MHT) is a binary tree in which each leaf

node contains data, and each non-leaf node contains the hashes of
its child nodes [25]. The structure of the tree can be leveraged to
efficiently prove that a leaf node (or its data) is in the tree. Since as
shown in Figure 1, only one node per level of the tree is needed in
a proof of presence, the proof size for any leaf node is proportional
to the tree height, which is O(log2 n) for n leaf nodes.

An entity wishing to verify the presence of d2 in the tree shown
in Figure 1 would receive the set {d2,H(d1),H(H(d3)‖H(d4))},
which forms the proof of presence. The entity then hashes d2,
which with H(d1) allows it to compute H(H(d1)‖H(d2)). This
value can then be concatenated with H(H(d3)‖H(d4)) and hashed
to obtain the root hash, the value at the root node of the tree. By
comparing the computed root hash with the true root hash of the
tree, a party can check whether or not d2 is in the tree.

If leaf nodes are ordered in some way (such as lexicographic
ordering for strings), the tree can also provide proofs of absence.



For example, if the leaf nodes in Figure 1 are domain names d1 =
a.com, d2 = c.com, d3 = d.com, and d4 = e.com, then the set
of nodes {d1,d2,H(H(d3)‖H(d4))} forms a proof of absence for
b.com. This is because d1 and d2 are adjacent nodes between which
b.com would be located if it were in the tree.

If leaf nodes are ordered chronologically for when they were in-
serted into the tree, then the tree can provide proofs of consistency

showing that leaf nodes have only been added to the tree. Such a
proof of consistency takes the root hashes of the tree at different
times rt and rt ′ and provides an efficient proof (logarithmic in the
number of leaf nodes) that the two root hashes are linked in time.
This can be done by providing a set of nodes which can be used to
compute both rt and rt ′ , or by providing a set of nodes containing
rt which can be used to compute rt ′ . The append-only property of
these MHTs can be used to implement tamper-evident logs [10].

3.2 Related Work
There has been much recent work on the problems of the current

TLS infrastructure and possible solutions to those problems [8, 15,
30]. Systems such as Perspectives [32], Convergence [1], and SSL
Observatory [12] introduce a trusted party called a notary, which
confirms that a TLS certificate seen by a client is the same as the
one seen by the notary. Other approaches attempt to reduce the
scope of CAs’ authority [13, 16, 19], thereby reducing the amount
of trust and power held by CAs today. Below we describe proposals
similar to PoliCert that use publicly-verifiable logs.

Google’s Certificate Transparency (CT) was among the first to
propose public logs and append-only MHTs as a way of providing
better CA accountability [24]. Its goal is to make all certificates
visible to alert domain owners and clients of any possible misbe-
havior by CAs. CT creates a system of public logs, which maintain
a database of observed certificates issued by CAs in an MHT. The
log then provides a proof of a certificate’s presence in the log’s
database, and this proof can be checked by clients during the TLS
handshake. Additionally, the log is publicly-auditable so that any
party can fetch proofs of presence or consistency from the log’s
hash tree to monitor its operations. Special entities called auditors

and monitors may perform these functions as a service for clients,
publishing any evidence of CA misbehavior.

However, CT has several critical shortcomings. By itself, CT
cannot efficiently prove that a given certificate is absent from a log,
since the observed certificates are stored chronologically to achieve
the append-only property. (Revocation Transparency proposes the
use of an additional tree to provide proofs of absence [23].) Fur-
thermore, CT’s main goal is to detect CA misbehavior, and thus it
does not actually protect clients from ongoing attacks if an adver-
sary successfully registers a fake certificate at a public log. Finally,
CT does not handle certificate revocation. Although auxiliary revo-
cation system was presented [23], so far it is not incorporated with
CT. Instead, revocation is proposed to be handled by certificate re-
vocation lists (CRLs) provided with a browser update, as is done
in Google Chrome [22] and planned in Mozilla [26], and even then
only for a subset of certificates.

The Accountable Key Infrastructure (AKI) [20] extends the
previous architectures in several ways. First, it allows multiple CAs
to sign a single certificate. Additionally, the domain can specify
in its certificate which CAs and logs are allowed to attest to the
certificate’s authenticity. These features provide resilience against
a certificate signed by a compromised or unauthorized CA. AKI
can also handle key loss or compromise through cool-off periods.
For example, if a domain loses its private key and registers a new
certificate not signed by its old private key, the new certificate will
be subject to a cool-off period (e.g., three days) during which the

certificate is publicly visible but not usable. This ensures that even
if an adversary obtains and registers a fake certificate, the domain
has the opportunity to contact the CAs and logs to resolve the issue.

However, to ensure that any log server can provide a proof for a
domain’s certificate, AKI logs maintain a globally consistent view
of the entries that they have for a given domain name. This applies
for every certificate operation (registration, update, and revocation),
meaning that even frequent certificate updates (such as in the case
of short-lived certificates) are subject to successful log synchro-
nization. AKI also requires that each domain name only has one
active and valid certificate associate with it at any given time.

Certificate Issuance and Revocation Transparency (CIRT)

incorporates a revocation monitoring mechanism into a CT-like ar-
chitecture [27]. CIRT adds a binary search tree sorted by domain
name (called a LexTree), with each node also storing all of the
observed certificates for that name (but only the most recent cer-
tificate is considered valid). A LexTree is an MHT where a node’s
hash is equal to its domain name and certificates concatenated with
its children’s hash values. Using this binary search tree in conjunc-
tion with a CT-style append-only tree allows a log to prove with a
logarithmic number of nodes that a certificate has been observed
and that it has not yet been revoked.

Log proofs in CIRT contain a logarithmic number of nodes, but
each node stores all observed certificates for a domain and thus
may have a large number of observed certificates. Thus proofs in
a LexTree will grow quite large with time, as certificates must be
renewed periodically. Additionally, CIRT’s LexTree allows each
domain to have only a single active certificate at any time, pre-
venting servers from using different certificates at once, which is
common practice today [21]. CIRT also cannot handle key loss or
compromise; in this event, the only way to recover is to resolve the
issue with CAs and logs out of band.

Attack Resilient Public-key Infrastructure (ARPKI) [4] is a
system inspired by AKI, which redesigns and improves many as-
pects of AKI. ARPKI introduces framework for accountability, val-
idation, and consistency checking of public logs. It provides strong
security guarantees by offering security against an adversary ca-
pable of capturing n− 1 trusted parties at the same time (where
n≥ 3 is a system parameter). It also relaxes AKI’s synchronization
requirement by proposing an accountable synchronization scheme
with a quorum of logs involved.The main contribution of that work
is that the claimed security properties of ARPKI were formally ver-
ified. PoliCert builds on top of ARPKI and extends it with the ap-
proaches we describe in this paper.

3.3 Summary of Remaining Challenges
We briefly summarize several challenges that remain despite the

previous work. Motivated in part by their shortcomings and by
other problems of the existing TLS infrastructure, we identify sev-
eral important facets of the certificate policy problem that our work
addresses.

A core challenge motivated by the previously mentioned schemes
is how to overcome the inefficiency of certificate management or
validation operations. In particular, logs need to be able to pro-
vide efficient proofs of both a certificate’s presence and absence in
the log’s database. Additionally, every certificate registration and
update should not require inefficient operations such as the global
synchronization of logs, nor should they limit domains to a single
certificate.

Another challenge is to incorporate certificate policies into the
TLS infrastructure without inhibiting the existing system. Certifi-
cate policies allow domains to specify parameters or constraints
for their certificates. While AKI and ARPKI maintain policy infor-



mation such as trusted CAs and logs, this information is embedded
into a domain’s certificate and thus must be re-registered with every
certificate update. Additionally, each domain is limited to a single
certificate in order to avoid multiple conflicting policies. We make
an important observation about certificates and policies: while cer-

tificates may be updated frequently, the policy behind these cer-

tificates is only infrequently updated. Therefore, the problem of
optimizing a new certificate infrastructure to this observation is a
central challenge in our work.

We also address the challenge of providing expressive policy
control to domains, and explore how this challenge relates to other
problems. For example, the current TLS warning model in web
browsers is ineffective due to users and browser vendors who de-
cide how a given error should be handled. [2, 14] Users (most of
whom are not security-conscious) want to visit their desired web-
site, and often do so despite browser warnings. Browser vendors
do not want to lose users and determine how TLS errors should
be handled, resulting in a “mass-effect” treatment of domain secu-
rity. As a consequence, both parties have an incentive to avoid hard
failure, which is the only effective protection during an actual at-
tack. Hence, we argue that the domain should influence the error
handling process, and we address the challenge of how to provide
expressive control to domains.

4. PoliCert OVERVIEW
We provide a high-level overview of the PoliCert infrastructure.

We begin by discussing the overarching design principles of Po-
liCert, and then discuss the salient features of multi-signature cer-
tificates, subject certificate policies, and log servers.

4.1 Main Design Principles
Our approach is centered around three main design principles

that aim to address the shortcomings of §3.3.
Domain-controlled certificate policy. The primary objective

of SCPs is to provide domain owners with greater control over
their certificate policy. Specifically, domain owners can specify
fine-grained policies governing the usage of certificates issued to
them. Additionally, these policies can extend to govern certificate
usage in subdomains, allowing for example the owner of a.com to
constrain certificates for b.a.com or *.a.com. Additionally, the
framework for these policies is easily extensible to allow for even
more fine-grained certificate policy control in the future.

Separation of certificates and policies. The defining feature of
our proposal is that we separate the keys for policies governing a
domain’s certificates from the keys for the certificates themselves.
We observe that certificates are issued, updated, and revoked more
frequently than policies. Because the keys in certificates are used
much more frequently (with each TLS setup) and are critical to
establishing a TLS connection, they are more likely to be compro-
mised. By separating these keys, we can protect the key used for
a domain’s certificate policy, which provides control over all of a
domain’s certificates.

One policy, multiple certificates. We observe that while a do-
main may have multiple certificates, it has one certificate policy
that remains consistent. Because we separate policies and certifi-
cates as described above, we can leverage globally synchronised
logging scheme to monitor SCPs since domains only have a single
SCP. On the other hand, because MSCs change more frequently,
we avoid such a scheme for MSCs, monitoring them at selected
logs specified by the domain’s SCP. Logging MSCs in this way al-
lows us to register and revoke MSCs efficiently without hindrance
from global log synchronisation.
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Figure 2: Overview of the MSC registration and validation pro-

cess. Only a single log server and auditor are shown.

4.2 Overview
The main insight of our work is embodied in subject certificate

policies (SCPs), which bind a policy key pair (i.e., a policy pub-

lic key and a policy private key) to parameters governing and pro-
tecting the usage of a domain’s certificates. In particular, SCPs
provide information such as CAs authorized to sign certificates for
a domain, minimum security levels for TLS parameters, and how
certain TLS handshake errors should be handled, as well as which
of these requirements also must be respected by certificates issued
to subdomains. SCPs are themselves certificates, allowing us to
leverage their signature and validation mechanisms and to provide
resilience against compromised CAs.

We also extend the current X.509 format and propose multi-

signature certificates (MSCs), which allow multiple CA signatures
to authenticate a single public key. A valid MSC requires only a
certain threshold of the signatures to be valid, providing some re-
silience against CA compromise. We encode MSCs as a series of
X.509 certificates for interoperability with today’s TLS PKI.

An overview of the PoliCert infrastructure is shown in Figure 2.
There are five main parties in PoliCert:

1. The Client wants to establish a secure connection to various
sites in the Internet. The client browser is designed by a browser
vendor, who determines among other things the behavior of the
browser in case of errors during the TLS handshake.

2. A Domain is a site to which the client wishes to connect. The
domain creates one or more keypairs and public key certificates,
which are signed and presented to the client during TLS hand-
shakes.

3. A Certificate Authority (CA) signs domains’ public-key cer-
tificates with their own private keys. Root CAs have their public
keys included in client browsers, while intermediate CAs are
certified by other CAs.

4. A Log Server maintains a Merkle hash tree-based database of
domains’ certificates and policies. Log servers generate crypto-
graphic proofs of a certificate’s validity and periodically provide
these proofs to domains. As with root CAs, log servers do not
present certificates to clients, but rather have their public keys
included in browsers.

5. An Auditor periodically fetches a log’s database to verify that
all of the information is correct. It also allows clients to verify
the correctness of proofs from log servers.



As Figure 2 shows, all actions and messages in PoliCert fall into
one of three categories. In the first category, certificate issuance

and revocation, the domain begins by creating a policy keypair and
obtaining CA signatures on these to create a subject certificate pol-
icy. The domain registers this policy at its trusted log servers. Sim-
ilarly, the domain creates a keypair for its certificate and obtains
signatures from a set of CAs (which can be different from those
that signed the domain’s SCP) to create a multi-signature certifi-
cate and registers it at the log servers. The logs return a signed
receipt of these registrations, which contains a time after which the
domain’s certificate and policy are guaranteed to be in the log.

In the log audit category, auditors periodically query the log
servers for newly registered or updated entries. The log servers
provide these entries and their corresponding proofs, allowing the
auditors to verify these proofs. The logs also provide a signed copy
of the root hash to the auditors, which can be used to corroborate
a client’s calculated root hash. For efficiency, the auditor can also
sign the root hash that it has computed and provide this to domains,
who can then staple this root hash to its certificate and proofs.

The final category is certificate validation, in which a client ini-
tiates a TLS handshake with the server and receives its certificate,
policy, log proofs, and (if included) auditor-computed root hashes.
To validate a certificate, a client’s browser must verify several crite-
ria: 1. validity of the CA signature(s) on the certificate, 2. presence
of the certificate in the logs’ databases, 3. absence of the certifi-
cate’s revocation, 4. compliance of the certificate with all applica-
ble policies, and 5. presence of these policies in the logs’ databases.

Because the domain has a signed MSC and corresponding log
proof attesting to its current and valid status, it can prove to the
client that its certificate meets the first three criteria. The domain
may or may not specify any parameters in its own SCP, but will
have a proof for the SCP which by design contains all applicable
policies for the MSC and proves that these policies are registered
and current in the log (described in §5.3). With this proof the do-
main can prove to the client that its certificate meets criteria 4 and 5.

The client then verifies these proofs by computing the root hash
for each of the proofs it has received. If the client did not receive
a root hash from the auditor along with the server’s information, it
can contact one or more auditors to corroborate the root hashes it
has computed. If the auditor has the same root hash that the client
has computed, then the proofs are considered valid.

5. THE PoliCert ARCHITECTURE
To explain the details of SCPs, we first provide an in-depth treat-

ment of MSCs (§5.1). We then describe the parameters and format
of SCPs (§5.2). Finally, we explain the structure of log proofs (§5.3)
and the benefits of structuring proofs in this way.

5.1 Multi-Signature Certificates
Multi-signature certificates (MSCs) authenticate a subject’s pub-

lic key using multiple CA signatures. For backwards compatibility
with current PKI standards we encode an MSC as a series of stan-
dard X.509 certificates1 authenticating a common public key. Thus
with n≥ 1 CA signatures, we define an MSC as follows:

MSCA = {Cert
CA1

A ,Cert
CA2

A , ...,Cert
CAn

A ,Cert
PA

A }, (1)

where Cert
CAi

A is an X.509 v3 certificate authenticating A’s public

key and signed by CAi, and Cert
PA

A is a policy binding signed by
A’s policy private key. The same private key cannot be used to sign

1An alternative approach for MSC implementation could be dedi-
cated extension of X.509 v3, that allows to authenticate the public
key by multiple CA signatures.

multiple certificates within an MSC (i.e. MSC is signed by distinct
CAs).

Every X.509 certificate within an MSC is obtained by the domain
in the same way that they are today, with the exception of the policy
binding. The policy binding is signed by a private key controlled
by A itself, and contains the current version number of A’s SCP and
a field CERTS in an X.509 extension, which lists the hashes of all
non-policy bindings within the MSC. This field allows the domain
owner to change the certificates within an MSC, and because the
policy binding can be generated by A independently of any CAs,
these changes can be made quickly.

In order for an MSC to be considered valid, some threshold num-
ber (defined in §5.2 by CERT_TH) of its certificates must be valid
(e.g., not expired and with a valid signature). An MSC with one
certificate and a threshold of 1 is equivalent to a regular X.509 cer-
tificate today, but contains a policy binding as well. Multi-signature
certificates can be revoked by a set of CAs or by the domain itself.
A CA can only revoke certificates that it has issued, meaning that an
MSC is only revoked as a whole by CAs if enough CAs revoke cer-
tificates within the MSC so that it no longer has a threshold number
of valid CA signatures.

5.2 Subject Certificate Policies
Subject certificate policies (SCPs) describe parameters regarding

the usage and validation of a domain’s MSCs. These parameters
are bound to the subject’s identity as well as to the policy public
key. The policy private key is used to sign the policy binding of a
domain’s MSC, as well as to authorize certificate revocations and
policy updates. Because the parameters in an SCP are bound to a
domain’s identity and policy keypair, we encode an SCP as an MSC
in which each X.509 certificate authenticates the policy public key
and lists the policy’s parameters in an X.509 v3 extension [9]. An
SCP must also be signed by a threshold number of CAs to be con-
sidered valid.

SCPs do not require a policy binding as other MSCs do, since
the public key and parameters of the domain’s policy are encoded in
each of the SCP’s X.509 certificates. Like any other MSC, however,
an SCP must be signed by one or more CAs and registered at the
log servers to be considered valid. Since domains are expected
to only infrequently change their policy, SCPs are assumed to be
stable (barring catastrophic events such as a weakness in a widely-
used encryption scheme). Therefore, we require that SCPs be valid
during an extended time period (e.g., five years).

All fields in an SCP are optional, except for the policy version.
Browser vendors set default values for each field so that if a field is
not specified by any applicable policy for a domain, that field takes
the default value provided by the browser. A subject certificate
policy contains the following fields:

1. General parameters

POLICY_VERSION: the version number of the current policy.

LOG_LIST: the domain’s trusted logs, at which its certificates, revoca-
tions, and policies are registered. If blank, all logs are considered
trusted.

LOG_TIMEOUT: how long proofs from the above logs are considered
valid.

CA_LIST: CAs authorised to sign the domain’s certificates and policies.
If blank, all CAs are considered trusted.

CERT_TH: the minimum number of CA signatures that must be valid
on a MSC, excluding the signature by the domain’s policy pri-
vate key. This parameter must be positive and cannot exceed the
number of CAs in CA_LIST (if the field is not blank).

REV_KEY: flag which allows domain to revoke any of its MSCs using
the private key connected with the domain’s policy.



2. Additional parameters of standard certificates

EV_ONLY: flag specifying that only extended validation (EV) certifi-
cates are valid in an MSC.

MAX_PATH_LEN: maximum length of a certificate chain.

WILDCARD_FORBIDDEN: forbids wildcard certificates [9].

MAX_LIFETIME: the maximum duration of a certificate’s validity.

3. Security parameters

CERT_SEC: minimum security level of MSC’s standard certificates.

TLS_SEC: minimum security level of negotiated TLS parameters.

4. SCP update parameters

UP_CA_MIN: number of signatures required to update the policy.

UP_CA_TH: threshold number of signatures required to update policy if
not signed by the policy private key.

UP_COP_UNTRUSTED: cool-off period applied if the new policy is signed
by a CA outside CA_LIST.

UP_COP_UNLINKED: cool-off period applied if the new policy is not
signed by the policy private key.

5. Soft/hard failure configurations (0 for soft failure, 1 for hard failure)

FAIL_CERT_TH: if the MSC is invalid (CERT_TH not satisfied).

FAIL_TLS: if the TLS security level is too low.

FAIL_EXP: if the log proof has expired (older than LOG_TIMEOUT).

FAIL_POL: if the policy version number is not the most recent.

FAIL_LOG: if the log proof is invalid.

FAIL_*: all other failures.

6. Inheritance mask, describing which fields are inherited by subdomains.

The value of CERT_TH also determines the number of CAs re-
quired to revoke an MSC. If an MSC is signed by n CAs, then n−
CERT_TH+ 1 revocations will invalidate the MSC. The CERT_SEC

parameter specifies a minimum key length and strength of the cryp-
tographic primitives used by the domain and CA to create the given
certificate. The CERT_SEC and TLS_SEC parameters can have val-
ues of 0, 1, or 2, corresponding to low, medium, or high security.
The evaluation of security level can be realized using standards and
reports like [11, 17]. The values associated with these levels are set
by browser vendors and can be changed by browser updates.

The ability to update these security levels allows browser ven-
dors to protect users from cryptographic vulnerabilities as long as
users update their browsers. These security levels also protect users
and domains from dangerous misconfigurations. Each failure con-
figuration has a value of 0 for a soft failure or 1 for a hard failure.
In the case of soft failure, the browser would display the reason for
the failure and give users the option to accept the certificate any-
way, while a hard failure does not allow users to continue. These
configurations allow the domain to take an active role in evaluating
and mitigating threats to the security of its connections.

5.3 Log Servers
Log servers are trusted and highly-available entities that monitor

issued certificates, revocations, and policies, which can be regis-
tered at log servers and maintained in the log’s database, stored as
MHTs. All logs maintain a certificate tree, which tracks certificates
(MSCs), and a policy tree, which tracks policies (SCPs), and these
trees are based on Merkle hash trees [25] as shown in Figure 1.

As explained in §3.1, the MHT structure allows the log server
to produce efficient and cryptographically-secure proofs that a leaf
is present in or absent from the tree. In the PoliCert infrastruc-
ture, these proofs demonstrate that a certificate is logged, not re-
voked, and compliant with all applicable subject certificate poli-
cies, as mentioned in §4.2. To avoid frequent updates to the trees
and thus to the proofs, objects are batch-added periodically (e.g.,
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Figure 3: Example of a certificate tree with a presence proof.

The hash of MSCmail.a.com is assumed to begin with a53.

every hour). The update frequencies of log servers are public in-
formation, allowing clients to query them after each update or as
needed.

When an object is accepted for insertion into a tree, the log server
schedules it and returns a signed receipt with a future time at which
the object is guaranteed to be present in the log’s database. Log
servers are required to produce a proof for a specific entry (certifi-
cate or policy) on request, which certify the current validity of that
entry. Log servers are also required to provide a proof of consis-
tency by showing that its database has been extended from a previ-
ous version of the database with valid transactions.

In certificate and policy trees, a leaf node Nx is defined as a tuple
(Lx,Dx,Vx) where Lx is a label used to order the nodes in the tree,
Dx is a set of data associated with the node, and Vx is the node’s
value whose hash is the parent node’s value. A non-leaf node con-
sists only of a value and will have one or two child nodes; in the
first case the node’s value will be the hash of its child’s value, and
in the second case the node’s value will be H(V1)‖H(V2), where V1

and V2 are its children’s values.
In a certificate tree such as the one shown in Figure 3, each leaf

node NMSCA
represents a multi-signature certificate MSCA for the

domain A in the form:

LMSCA
= H(MSCA) (3)

DMSCA
= (MSCA,RMSCA

) (4)

VMSCA
= MSCA‖RMSCA

(5)

where RMSCA
is a revocation message for MSCA or null if MSCA

is still valid. Note that if MSCA has not yet been revoked, then
VMSCA

= MSCA.
In a policy tree such as the one in Figure 4, a node NA represents

a domain name A. There are three data fields associated with NA:
1. the SCP PA of A (null if A has no SCP), 2. the policy subtree SA

of A (see below), and 3. the root hash rA of SA. The policy subtree

is an MHT of all of A’s immediate subdomain nodes (e.g., all nodes
*.com for .com). A leaf node NA in a policy tree has the following
fields:

LA = A (6)

DA = (PA,SA,rA) (7)

VA = PA‖rA (8)

A policy tree’s structure provides several useful properties. The
hierarchical organization of the tree according to the DNS names-
pace hierarchy makes it straightforward to find all policies pertain-
ing to a domain name. Furthermore, because each node’s value
includes its SCP, a proof for a node NA will contain all policies of
its higher-level domains, all of which may apply to A’s certificates.
This simplifies policy enforcement and forces logs to show that all
applicable policies to a domain are logged and current.
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Figure 4: Example of Policy Tree, where bold nodes are used

for mail.a.com policy’s presence proof.

However, the structure of the policy tree also has a drawback: the
size of a log proof is not quite logarithmic in the number of nodes.
The size of a proof is instead O(m log2 n), where m is the number
of levels in the domain name (e.g., three for mail.a.com) and n

is the greatest number of entries at any level of the domain name
(112M names under .com [31] in this case). However, in almost
all cases m will be very small (less than 5) and n will likely never
exceed the number of .com domain names.

If a domain such as b.a.com does not have a SCP, then the log
sends one of three classes of proofs to show policy compliance:

1. if any subdomain of b.a.com has its own policy then log shows
that Pb.a.com is empty.

2. if no domain at the same domain level (e.g., x.a.com) has an
SCP, then the log shows that Sa.com is empty.

3. if there are SCPs at the same domain level, then the log sends a
proof starting with the two nearest domain names on either side
of b.a.com (e.g., a.a.com and c.a.com).

Both the certificate and the policy tree represent only the set of
currently valid certificates. In order to prove the consistency of
a log’s database over time, the log maintains an append-only MHT
called a consistency tree. The consistency tree contains all SCP and
MSC registrations, updates, and revocations in chronological order.
Additionally, upon each update the log appends the concatenation
of the root hashes of the current certificate and policy trees to the
consistency tree. The log then provides a proof showing that the
root hashes are the most recent ones in the consistency tree, and
this proof is sent with the appropriate proofs from the certificate and
policy trees. The example of consistency tree is shown in Figure 5.
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Figure 5: Example of a consistency tree. At every update roots

of policy and certificates tree are appended as the last value.

6. PROTOCOL DESCRIPTIONS
We now describe in detail the steps by which a certificate is cre-

ated, registered, and validated in the PoliCert architecture. This
process takes place through SCP registration, MSC registration,
and client validation. We then describe how certificates and poli-
cies can be updated or revoked.

6.1 Policy Registration
Before a domain can register a certificate, it must first create and

register a subject certificate policy. A domain A at a.com creates
its own policy by specifying any parameters it wishes (described
in §5.2) and then obtaining CA signatures on the policy. Recall that
only the policy version is required in a valid SCP, so A can choose
to only specify a version number if it does not want to enforce any
policy on its certificates. A then obtains a number of CA signatures
on the policy to create a signed SCP.

Once A has a valid SCP, it can register the policy at one or more
logs by sending a registration request containing the SCP. Logs
must globally coordinate to ensure that two different SCPs for A

are not active simultaneously (to a given time tolerance). If the
registration is successful, the logs send to the domain signed reg-
istration receipts containing the policy and a time after which the
SCP is guaranteed to be recorded in the log’s database. This receipt
serves as a temporary proof of presence for the SCP.

Because each domain must have an SCP (in order to be protected
by the PoliCert) and these policies can greatly impact a domain’s
certificate usage, policies can only be updated, not revoked, and
must meet several criteria to be accepted by the logs. In particular,
the new policy must be signed with the policy private key of the
old policy, as well as by a threshold number of CAs (UP_CA_MIN).
To handle the loss or compromise of the policy private key, we also
allow domains to create an unlinked policy not signed with their
policy private key. However, in this case, the domain may need to
obtain a larger number of CA signatures (UP_CA_TH) and a “cool-
off” period is enforced as in AKI [20]. During this cool-off period,
the new policy is visible but not active. The domain can query the
logs for any policies for its name in a cool-off period in order to
detect fraudulent update attempts. Therefore, even if an adversary
manages to get a fake version of the domain’s policy accepted by
the logs, the true domain will have time to contact its CAs and logs
to resolve the issue.

To update its policy, a domain A sends an update request con-
taining P′A. The log receives this request, verifies the signatures on
the new policy P′A, and checks that its policy version number is one
more than that of PA. The log must then check whether its pol-
icy update meets the above criteria, such as being signed by at least
min(UP_CA_MIN,UP_CA_TH) CAs from CA_LIST (of the old SCP).
If not, the logs enforce the cool-off period as specified in the SCP.

After a successful update the log confirms the presence of the
new policy by returning a proof of presence to the domain. The
domain must then update its own MSCs to signal the use of the



new policy. Since as shown in Equation 1 the policy binding in each
MSC contains the policy number and is signed by the policy private
key, the domain does not need to contact other CAs in order to
update its MSCs. After updating, it simply submits its new MSCs
to the appropriate logs.

6.2 Certificate Registration
To create a multi-signature certificate, a domain first creates a

keypair with which it will establish TLS connections to clients. It
then obtains standard X.509 certificates from CAs, and combines
them along with a policy binding (signed by its policy private key
from the previous section) into an MSC. The domain then sends
a certificate registration request to its trusted logs. In contrast to
the SCP registration process, no global coordination of logs is re-
quired. Each log server receiving the registration request validates
the certificate and ensures that it is in the LOG_LIST field of the
domain’s SCP. If so, the log returns a registration receipt, a signed
statement containing the certificate that was registered and a time
by which the certificate is guaranteed to be in the log.

As stated in §5.1, every MSC can be revoked by its owner, by a
threshold number of CAs, or by a parent domain (if the policy al-
lows). In order to revoke given MSC, one of the above three sends
to all logs on the domain’s LOG_LIST a revocation request, which
contains the certificate and the appropriate signatures. If a log re-
ceives a revocation request and does not have the corresponding
certificate, it adds the MSC along with the revocation request to
its certificate tree. The log must not discard the revocation request
without this step because otherwise an adversary could register the
revoked MSC at a log server that previously had not recorded the
certificate and use it as a valid MSC. Once the log has processed
the revocation request, it returns a signed revocation receipt with
the certificate along with a time after which the revocation is guar-
anteed to be present in the log’s certificate tree.

6.3 Certificate Validation
Before an MSC can be validated, a client must first read the pa-

rameters in the domain’s SCP PA which contain the list of trusted
CAs and logs needed for the rest of the validation process. Recall
that policy fields can be inheritable (§5.2) and that a proof for a do-
main’s policy contains all policies of parent domains from which
fields can be inherited (§5.3). Therefore, we can extract from this
proof a list Plist of the parent domains’ SCPs. However, since al-
most all fields in an SCP are optional, it is possible that some policy
fields will not be specified by any applicable policy. In this case, the
browser will determine a default value for any unspecified parame-
ters as browsers do today. We call this “default policy” Pbrowser.

Once we have the above we can determine the appropriate pa-
rameters for each TLS connection. We achieve this through Algo-
rithm 1, which returns the set of parameters as a dictionary. The
algorithm treats each policy as a dictionary in which values corre-
sponding to a key can be accessed as P[key]. The dictionary that
will eventually be returned starts as Pbrowser, which usually contain
the least conservative parameter values. These default values are
then overwritten by the fields specified in PA. Next for each pol-
icy in Plist , the client checks whether the fields are inheritable (i.e.,
the corresponding bit in the SCP’s inheritance mask is set to 1). If
so, the inherited value overwrites the current one, but only if the
new value is more conservative. For example, if a domain’s policy
specifies a high security level for TLS connections, and a parent
domain’s policy specifies a medium level that is inheritable, then
the parent domain’s security level is not inherited because it could
result in a lower security level in the domain’s TLS connections.

Algorithm 1: Determine appropriate SCP parameters from the
SCP hierarchy.

PA - policy of domain contacted by a browser
Plist - list of policies of parent domains (with respect to PA)
sorted by level (from the most specific domain name to TLD)
Pbrowser - default browser policy

policyInheritance(PA,Plist ):
d = Pbrowser

for attr ∈ PA

d[attr] = PA[attr]
for P ∈ Plist

for attr ∈ {LOG_LIST,CA_LIST}
if P[attr].isInherited

d[attr] = d[attr]∩P[attr]
for attr ∈ {CERT_TH,CERT_SEC,TLS_SEC,

FAIL_CERT_TH,FAIL_TLS,FAIL_EXP,

FAIL_POL,FAIL_*,UP_CA_MIN,UP_CA_TH,

UP_COP_UNTRUSTED,UP_COP_UNLINKED}
if P[attr].isInherited and d[attr]< P[attr]

d[attr] = P[attr]
for attr ∈ {LOG_TIMEOUT,MAX_PATH_LEN,

MAX_LIFETIME}
if P[attr].isInherited and d[attr]> P[attr]

d[attr] = P[attr]
for attr ∈ {EV_ONLY,WILDCARD_FORBIDDEN}

if P[attr].isInherited and P[attr]
d[attr] = P[attr]

return d

Once the policy parameters have been determined, the domain’s
MSC must be “pre-validated.” The client checks whether the X.509
certificates within the MSC are issued for the correct domain and
whether the certificates all authenticate the same public key. The
client browser also checks that the version number of the policy ob-
tained from Algorithm 1 matches the version number in the MSC’s
policy binding, and that the hash of each certificate appears in the
CERTS field of the policy binding. The client browser then verifies
the signature on the policy binding, which is signed by the domain’s
policy private key.

With pre-validated MSC and SCP parameters, the client browser
can then validate the MSC by following Algorithm 2. The most im-
portant parameter for this validation is CERT_TH, which describes
how many standard certificates must be valid in a multi-signature
certificate in order for the MSC to be valid. A certificate is classi-
fied as valid and counts toward CERT_TH if 1. its signature is suc-
cessfully verified, 2. the private key used to sign the certificate has
not already signed another certificate counting towards CERT_TH,
and 3. the certificate meets the constraints set by the SCP parame-
ters. If CERT_TH is met, then the client browser proceeds to validate
the log proofs for the MSC.

6.4 Log Proof Validation
After a successful SCP or MSC registration, the log returns a

registration receipt promising that the certificate or policy will be
added to its database within a certain amount of time. This registra-
tion receipt can be used as a short-term confirmation that an SCP or
MSC is in the log, but log proofs are more commonly used for this
purpose. To successfully establish a connection to the domain, the
client requires proofs that the policy is registered, as well as proofs
that the MSC is registered and not yet revoked.



Algorithm 2: MSC validation.

d - dictionary generated by policyInheritance() execution
isLegacyValid() - standard validation for single certificate

isMSCValid(d,{Cert
CA1

A ,Cert
CA2

A , ...,Cert
CAN

A ,Cert
PA

A }):
S = {}

for Cert
CAx

A ∈ {Cert
CA1

A ,Cert
CA2

A , ...,Cert
CAN

A }

if (CAx ∈ d[CA_LIST] and isLegacyValid(A,Cert
CAx

A ))

if (getCertSec(Cert
CAx

A ) < d[CERT_SEC]) or

(getPathLen(Cert
CAx

A ) > d[MAX_PATH_LEN]) or

(getLifetime(Cert
CAx

A ) > d[MAX_LIFETIME]) or

(not Cert
CAx

A .isEV and d[EV_ONLY]) or

(Cert
CAx

A .isWildcard and d[WILDCARD_FORBIDDEN])
continue

S = S∪{CAx}
return |S| ≥ d[CERT_TH]

While anyone can request such proofs from a log, proofs are
often periodically retrieved from the log by the domain and stapled
to the MSC and SCP during connection setup. To request a log
proof, the domain sends a proof request to the log containing a
hash of its MSC. The log uses this hash to locate the appropriate
leaf node in its certificate tree and generates a proof of presence or
absence (as in Equation 2) for this node.2 The log also produces a
proof of presence for the domain’s policy (following Equation 9),
as well as a proof that the policy and certificate trees’ root hashes
is the most recent one recorded in the consistency tree. The log
then sends these three proofs along with a signed root hash of the
consistency tree to the domain. The domain can pass these proofs
and hashes on to the client.

There is also a possibility that the log does not have a proof for
an SCP or MSC. It may be the case that the MSC, SCP, or both
does not have a corresponding log proof because the log has not
yet updated its database to reflect a registration. In this case, a
registration receipt from the log suffices as a proof of presence so
that domains who newly register a certificate and policy can begin
serving customers as soon as possible. It may also be the case that
the domain has not yet adopted PoliCert. In this case, the client
can request a proof of absence for the domain’s SCP from one or
more of the log servers. This prevents an adversary from obtaining
a bogus certificate for a domain and suppressing the log proofs to
make it seem as though the domain has not yet deployed PoliCert.
When requesting a proof of absence, the client may want to proxy
the request through another log [1] or request several decoy proofs
to preserve the privacy of its queries.

6.5 Connection Establishment
The client initiates a TLS connection with a domain using Algo-

rithm 3. In the first ClientHello message, the client browser sends
the latest seen version numbers of domain’s policy and all parent
domain policies it has from the previous connections. The domain
then sends its multi-signature certificate, subject certificate policy
(if the browser does not have the latest version), and the appro-
priate log proofs or registration receipts showing that the MSC is
valid and compliant with appropriate policies. The browser vali-
dates the proofs, determines the policy parameters, and validates

2If a revocation request for an MSC has been accepted but the log
has not yet updated its database, the log returns the revocation re-
ceipt for the certificate.

Algorithm 3: TLS connection establishment.

preValidation() - pre-validates MSC, policies, and
proofs (§6.3). If pre-validation fails and the browser has a
stored policy for the domain, then FAIL_POL and FAIL_LOG

from this policy can be applied in the appropriate scenario.
Otherwise, it hard fails.
getSec() - evaluates security level of TLS parameters
f ail(S) - if S 6= {} fails with max(S) failure scenario (0 - soft

fail, 1 - hard fail) and shows all occurred errors to client

Client A’s Server Log

proofs request −→
(every ←− proofs

ClientHello LOG_TIMEOUT)
(indicates stored policies) −→

←− MSCA,PA,Plist ,proofs

S = {}
preValidation(...)

d = policyInheritance(PA,Plist)
if not isMSCValid(d,MSCA)

S = S∪{d[FAIL_CERT_TH]}
if getSec(TLSParams) < d[TLS_SEC]

S = S∪{d[FAIL_TLS]}
if proofs are expired

S = S∪{d[FAIL_EXP]}
if Log 6∈ d[LOG_LIST]

S = S∪{d[FAIL_LOG]}
f ail(S)

the domain’s MSC. The browser negotiates the TLS connection
with the appropriate security level and, if all other operations are
successful, accepts the connection.

7. IMPLEMENTATION AND EVALUATION
In order to evaluate the deployment feasibility and performance

of PoliCert, we implemented each of the parties in the architecture.
The client-side code, which includes Algorithms 1 and 2 as well as
part of Algorithm 3, was implemented by extending the Chromium
web browser. We deployed our domain on both Apache and Nginx
HTTP servers, which were equipped with special scripts to send
proof requests and periodically process responses from the log.
The domain sends these proofs to clients during the TLS handshake
protocol. Because CAs have a similar role in PoliCert as they cur-
rently do, we used standard tools such as OpenSSL to handle CA
certificate operations, and created multi-signature certificates and
policies with several trusted CAs of our making. We used elliptic
curve cryptography for our keypairs, with ECDSA [18] as our sig-
nature scheme. We selected the elliptic curve secp521r [5, 7] from
OpenSSL 1.0.1f, and also used this version for all cryptographic
operations. We implemented our log servers in C++ (gcc 4.8.2)
using SHA-512 as the hash function for the Merkle-hash trees. Au-
ditors compare the signed root hash value from the logs with those
they have stored to detect potential misbehavior.

For our evaluation we deployed three machines running Linux
3.13.0-24-generic x86_64, representing a log (Intel i5-3210M, 2.50
GHz, 4GB of RAM), a domain/server (Intel i5-3210M, 2.50 GHz,
4GB of RAM), and a client browser (Intel i5-3470, 3.20 GHz, 8GB
of RAM). Since the log serves many types of requests, we sent 500
of each type of request (policy registration, policy update, certifi-
cate registration, certificate revocation, and proof request) to the



Action Avg. Median Min. Max.

Policy Registration 10.02 9.79 6.50 16.33

Policy Update 10.75 10.27 7.70 14.52

Certificate Registration 7.35 6.73 5.84 12.58

Certificate Revocation 4.90 4.57 2.69 9.37

Proof Request 8.99 8.58 5.64 18.00

Table 1: Log’s processing time (in ms) for different requests.

Action Avg. Median Min. Max.

MSC Pre-validation 0.79 0.78 0.75 1.40

SCP Processing (Alg. 1) 0.50 0.49 0.45 1.05

MSC Validation (Alg. 2) 0.60 0.59 0.55 1.22

Proof Validation 1.45 1.44 1.39 1.78

Complete Validation 3.34 3.32 3.17 4.84

Table 2: Browser’s processing time (in ms) in details.

log. We show the average, median, minimum, and maximum pro-
cessing times for each request type in Table 1.

The synchronization protocol, required for global logs’ coor-
dination in the case of policy registration and update, was real-
ized with a two-phase commit protocol [3], where all messages are
signed by participants.

To evaluate the computational effort required by the browser, we
executed the browser’s side of verification 500 times. In this sce-
nario the browser was connecting to localhost.net serving an
MSC, its own policy, and a policy of .net. Each multi-signature
certificate consisted of three standard certificates. The total time
taken by the browser was divided into several categories as shown
in Table 2: pre-validation of MSCs, SCP parameter processing,
MSC validation, and log proof validation.

The MSC with policies was sent in the Server Certificate mes-
sage of the TLS Handshake, allowing us to deliver the multi-signature
certificate and policies without any changes to the browser. The
log proofs were sent to the browser via the OCSP Stapling exten-
sion [6], saving the client the need to fetch the proofs separately.
Since the applicable policies were already sent for SCP processing
(Algorithm 1), the SCPs of the domain and its parent domains do
not have to be included with the proof. Rather, for better efficiency
the domain can omit this information and instead have the client
browser fill in the gaps with the policies, significantly decreasing
message overhead.

However, the highest message overhead is due to the structure of
MSCs, which contain multiple X.509 certificates for the same key.
Because of this structure some fields are duplicated, once for each
certificate in the MSC. However, we can decrease this overhead by
compressing the certificates during transmission.

Our results show that PoliCert introduces a small overhead in
logs, around 9 ms per proof request (the most common request
sent to logs). This means that even on standard hardware the log
can handle about 111 proof requests per second. However, we ex-
pect that servers will only infrequently query logs (e.g., every few
hours), since log proofs can be stored and reused for some time.
Notice that in interactions between the client browser and the do-
main, the overhead is 3.3 ms on average, which is short enough to
be unnoticeable by users [29].

8. POSSIBLE ENHANCEMENTS
We now present an overview of a possible security enhancement

to PoliCert which combines our architecture with another proposal
called ARPKI [4]. In ARPKI, a domain interacts with the PKI,

employing n trusted entities, and the system prevents attacks even
when an adversary controls n−1 of these entities. In our proposal,
we define n≥ 3 to be a system parameter, where the log contacted
by the domain is one of the n trusted parties along with n−1 audi-
tors. We show an overview of the architecture and general message
flow in Figure 6. The logs’ operation is similar to that described
in §6, but their correctness is asserted by additional trusted parties
(auditors). Auditors3, as in ARPKI, can detect log’s misbehaving
and disseminate that information among each other.

Figure 6: Overview of architecture of PoliCert in combination

with ARPKI.

As in PoliCert, the first step for a domain is is policy creation

and registration. We introduce new SCP’s parameter AUDITOR_LIST,
which defines at least n−1 auditors trusted by the domain. The do-
main creates an SCP and a registration request along with a list of
auditors to confirm that registration. The request, however, is sent
first to the first auditor in the list, who then passes it to the log. The
log performs the same checks and synchronizations as in §6.1, but
the registration receipt is then returned to the second auditor, who
checks that the registration was carried out correctly. This auditor
then signs the receipt and passes it to the next auditor. Each of
n−1 auditors performs similar checks and verifies whether the log
indeed appended the SCP in the next update period. Finally, the
domain receives a receipt confirmed by n−1 trusted auditors. For
SCP updates the message flow is identical, and the auditors verify
whether or not the log correctly updated policy (e.g. if a potential
cool-off period was satisfied).

For certificate registration the message flow is the same as pre-
viously. The log operates as presented in §6.2, and the only dif-
ference is that log sends the receipt to an auditor instead of to the
domain. At the end the domain obtains a registration receipt con-
firmed by auditors, and the auditors again checks log’s content after
the next update for the registered MSC. In the case of a certificate
revocation, auditors similarly confirm that the certificate was re-
voked in the log.

As in PoliCert, domains periodically send proof requests and re-
ceive from the log proofs of their SCP and MSC’s presence. How-
ever, these proofs are additionally confirmed by n− 1 auditors.
Browser-based validation is almost the same as presented in §6.3.
The only extra step is that the browser also checks if the proofs (or
receipts) are confirmed by n−1 auditors from the domain’s AUDI-
TOR_LIST.

9. SECURITY ANALYSIS
We now conduct an informal security analysis of PoliCert. In

this analysis we assume that a domain A has correctly registered its
policy and MSCs at the logs. We consider an adversary who is able
to capture trusted elements of the system (logs, CAs, and domains
private keys) and whose goal is to impersonate A’s website.

3In ARPKI CAs take the auditor’s role.



Our first claim is that an adversary without A’s policy private key

cannot create a valid MSC for A. Constructing a multi-signature
certificate (Equation 1) requires a policy binding which combines
a set of X.509 certificates into one logical MSC. Because the pol-
icy binding must be signed by A’s policy private key, an adversary
without that key cannot create any valid MSC.

Even if we assume that the adversary has access to the policy’s
private key, then we can show that the adversary cannot imperson-

ate A without compromising at least CERT_TH of A’s trusted CAs

(from CA_LIST). This is due to the MSC validation process (Algo-
rithm 2), which requires a valid MSC to contain at least CERT_TH
valid X.509 certificates. This threshold is also a lower bound, since
the domain may inherit a higher threshold from its parent domain’s
SCP.

An adversary who has compromised the required number of A’s
trusted CAs and A’s policy private key can impersonate A by cre-
ating a malicious MSC and serving it to the clients. However, to
mount this MitM attack the adversary must receive confirmations
(a registration receipt or log proof) from the log. This requires first
registering the malicious MSC, which would make the fraudulent
certificate publicly visible. The adversary could also attempt to up-
date the SCP itself, but this would require compromising at least
UP_CA_MIN CAs, which may be more than CERT_TH.

If we assume that logs are not malicious, then all of the above
attacks can be detected since all of the adversary’s actions would
become publicly visible. If we assume a worst-case scenario where
the adversary has compromised at least CERT_TH of A’s trusted
CAs, A’s policy private key, and one or more of A’s trusted logs,
then the adversary could forge an MSC, and the necessary log proofs
or registration receipts. However, even in this case the MSC would
have to comply with A’s SCP, constraining the malicious MSC.
Additionally, while the adversary could send the client registration
receipts and never add the fraudulent MSC to the log, this action
would also be detectable after some time, as eventually the regis-
tration receipts would expire and anyone querying the log after the
receipts’ expiration would find that the MSC was not in the log.

Security level can be increased by contacting number of auditors,
that could confirm log’s actions. In §8, we propose such archi-
tecture. The achieved property is that with successfully registered
SCP, an adversary even with n− 1 parties compromised, cannot
launch impersonation attack undetectably, as n parties are actively
involved in asserting correctness of SCPs and MSCs.

10. INCREMENTAL DEPLOYMENT
The PoliCert infrastructure is designed to be interoperable with,

and incrementally deployable alongside, the current TLS PKI. One
important feature of our architecture is that CAs act no differently
than they currently do, allowing them to preserve their existing
business model. Because an MSC is mostly made up of a series
of X.509 certificates, it can be implemented and validated using
currently available tools and methods, and served in the standard
TLS handshake. Moreover, PoliCert even works with legacy soft-
ware, since all major browsers only validate the first certificate they
receive from a domain. Thus for a legacy browser, only the first cer-
tificate in the MSC needs to be valid, and the rest of the MSC will
be ignored.

During incremental deployment of PoliCert there is the possibil-
ity that an adversary may attempt a downgrading attack. In this
attack, the adversary impersonates a domain and claims that it has
not yet deployed PoliCert and hence has no proofs for its certificate
or policy. In this situation a PoliCert-enabled client browser can ob-
tain a proof of absence for the domain’s SCP as discussed in §6.4.
Because the logs synchronise SCPs globally, any log should be able

to return a proof of presence or absence for the domain’s policy. In
fact, a proof of absence for a domain’s SCP allows a client to es-
tablish a TLS connection with a legacy domain, further illustrating
the interoperability of PoliCert with the current PKI.

The hierarchical structure of SCPs also allows legacy domains
to benefit from the protection of PoliCert. For clients deploying
PoliCert, validating a legacy domain’s certificate will require fetch-
ing a proof of absence for the domain’s SCP. However, this proof
will also contain all SCPs of parent domains, if they exist. With
wisely chosen SCP parameters, a parent domain can protect all of
its subdomains by, for example, forbidding wildcard certificates or
limiting the lifetime of a certificate. These parameters constrain
any certificates that an attacker might try to craft for the domain,
providing resilience against malicious certificates even for legacy
domains.

Additionally, parent domains can leverage the hierarchical struc-
ture of SCPs to incentivise the adoption of PoliCert or higher secu-
rity levels. For example, by setting CERT_TH to 2 and making the
parameter inheritable, a parent domain can force the adoption of
PoliCert for all of its subdomains. A parent domain could also set
MAX_LIFETIME and make it inheritable to ensure that their subdo-
mains regularly renew their certificates. From security perspective
it may be worth to consider minimum/maximum values e.g. for up-
date parameters. It requires debate however it is reasonable, espe-
cially for top level domains, whose policies may influence millions
of subdomains.

A domain also has incentives to deploy PoliCert due to privacy
and efficiency reasons. For a legacy domain the client must fetch
a proof of absence for the domain’s SCP, incurring extra latency
when establishing a TLS connection to these domains and leaking
privacy if the client directly contacts a log server for such a proof.
Deploying PoliCert would cause the domain to staple log proofs of
its SCP, saving extra round trips and preserving the client’s privacy.

Moreover, PoliCert can be built upon currently deployed system
like CT. That is caused by a fact that both systems employ similar
data structure (consistency tree) as a core element.

11. CONCLUSION
In this work, we presented PoliCert, a comprehensive solution

that addresses a range of problems with the current TLS ecosys-
tem. PoliCert secures domains’ certificates and allows domains to
create policies for their certificates as well as their subdomains’ cer-
tificates. Additionally, PoliCert handles all operations over a cer-
tificate’s lifetime (creation, registration, validation, and revocation)
in a secure and transparent manner.

By introducing long-term policies, we make a domain’s security
statements stable and transparent, and narrow the range of mali-
cious certificates that an attacker can forge. These policies can be
created by IT/security departments and applied to subdomains, al-
lowing experts to easily coordinate certificate policies for their net-
works. Additionally, the hierarchical enforcement of SCPs allow
domains to protect subdomains from human errors such as miscon-
figuration.

In order to evaluate the feasibility of our system, we fully im-
plemented it and sketched an incremental deployment plan. Our
implementation results show that such a system can be successfully
deployed without significant influence on standard client-server con-
nection. Additionally, we showed that PoliCert is interoperable
alongside the current TLS infrastructure and can be deployed using
well-known tools without breaking legacy software or protocols.

However, several challenges still remain. Global synchroniza-
tion among logs is required for some actions, however infrequent
they may be. In future work we plan to investigate whether or not



this requirement can be relaxed while maintaining efficiency. We
also plan to explore other parameters that can be specified in SCPs,
and what benefits can be realized through more detailed specifi-
cations of certificate policy. However, through PoliCert we have
provided an infrastructure which provides domains with more con-
trol over the security of their own TLS connections, and provided
initial steps towards improving today’s TLS ecosystem.
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