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ABSTRACT
Despite the plethora of incremental deployment mechanisms
proposed, rapid adoption of new network-layer protocols and
architectures remains difficult as reflected by the widespread
lack of IPv6 traffic on the Internet. We show that all de-
ployment mechanisms must address four key questions: How
to select an egress from the source network, how to select
an ingress into the destination network, how to reach that
egress, and how to reach that ingress. By creating a de-
sign space that maps all existing mechanisms by how they
answer these questions, we identify the lack of existing mech-
anisms in part of this design space and propose two novel
approaches: the “4ID” and the “Smart 4ID”. The 4ID mech-
anism utilizes new data plane technology to flexibly decide
when to encapsulate packets at forwarding time. The Smart
4ID mechanism additionally adopts an SDN-style control
plane to intelligently pick ingress/egress pairs based on a
wider view of the local network. We implement these mech-
anisms along with two widely used IPv6 deployment mech-
anisms and conduct wide-area deployment experiments over
PlanetLab. We conclude that Smart 4ID provide better
overall performance and failure semantics, and that inno-
vations in the data plane and control plane enable straight-
forward incremental deployment.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design; C.2.2 [Computer-Communication
Networks]: Network Protocols

Keywords
incremental deployment; network architectures; future In-
ternet architecture
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1. INTRODUCTION
Internet Protocol version 4 (IPv4) has been the internet-

working protocol for decades. However, as networking tech-
nologies advanced, new versions [13], new Internet archi-
tectures [17, 33], and new features (multicast [12], QoS [6],
etc.) have been introduced to address shortcomings of IPv4.
These new designs are not compatible with IPv4, so de-
ployment is challenging. Since a global “flag day” where all
machines upgrade simultaneously is not a viable solution,
incremental deployment mechanisms are required to realize
the benefits of these new designs.
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NNA$

NNA$

F3$
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F1$
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Egress$

Ingress$

Figure 1: Disjoint NNA Clouds

In this paper, we define incremental deployment of a
network-layer protocol as the ability for two hosts using a
new network-layer architecture (NNA, e.g., IPv6) to be able
to communicate with each other before they have an entirely
NNA path between them. Figure 1 shows a common sce-
nario where the path between a pair of hosts in a source and
destination network consists of an old network architecture
(ONA, e.g., IPv4). We focus specifically on the incremental
deployment of network-layer protocols as their deployment
has traditionally been the most difficult due to the “narrow
waist”-model of the Internet. This means that the scope of
this work is focused solely on changes at the network layer
(e.g., IPv6, XIA [17], NDN [33], MobilityFirst [27]), and not
higher-layer protocols such as DNSSEC or S-BGP. Although
other factors such as policy and economic incentives are sig-
nificantly important to a protocol’s initial deployment, we
narrow our scope to the technical aspects of deploying the
protocol incrementally, providing the initial steps towards a
holistic principled design.

Unfortunately, most new architectures do not consider in-
cremental deployment as their first-order objective [17, 33].
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Thus, incrementally deploying these new protocols over the
current Internet requires external support mechanisms that
are described as part of neither the old nor new protocols.
The most widely seen example of this is IPv6’s deployment
over IPv4, which makes use of a large number of proposed
incremental deployment mechanisms, such as Teredo [18],
6to4 [8], and 6rd [14]. However, despite this variety of ex-
ternal deployment mechanisms, IPv6 traffic accounts still
for a small fraction of all web traffic (typically less than
0.2% [22]) and the majority of this IPv6 traffic (80% [1])
uses an entirely native path, eschewing incremental deploy-
ment entirely. The lack of use of these mechanisms suggests
that there may be significant need for further improvement.

To better understand and improve the mechanisms for
incremental deployment, we categorize the existing mecha-
nisms into a design space based on how each design answers
these four questions:

• How and when to select an egress gateway from the
source NNA network

• How and when to select an ingress gateway into the
destination NNA network

• How to reach the egress gateway of the source NNA
network from the source host

• How to reach the ingress gateway of the NNA destina-
tion network from the source NNA network

This problem breakdown allows us to 1) systematically ex-
amine the design choices made by existing deployment mech-
anisms, 2) guide the design of a new deployment mechanism,
and 3) easily compare different mechanisms and characterize
the tradeoffs. In fact, in studying the design space, we iden-
tify that an interesting part is left unexplored. Thus, this
paper explores the design space more fully by describing two
new classes of mechanisms and generalizing two previously
explored classes of mechanisms.

The four (existing and new) classes and their instances
are as follows:

1. Static Tunnels: 6in4 [28], AYIYA [26], TSP [4]

2. Address Mapping: 6to4 [8], 6over4 [7], 6rd [14],
Teredo [18]

3. Flexible Addressing: 4IDs (new)

4. Smart Control Plane: Smart 4IDs (new)

To characterize the real-world performance tradeoffs of the
four classes, we implement a representative mechanism from
each class and perform wide-area experimentation over Plan-
etLab [11]. We explore how the choices made in each class di-
rectly impact host performance (path latency, path stretch,
and latency seen by applications) as well as failure semantics
(failure detection and recovery time) through a quantitative
analysis. We additionally provide a qualitative analysis of
management and complexity overhead of each mechanism.
Path latency and stretch provide insight into the quality of
the path chosen by each mechanism, whereas application la-
tency shows the path’s impact on hosts. Failure semantics
and management/complexity overhead present a fuller pic-
ture of the effort needed to use these mechanisms, which is
often left out in analysis.

Our results shows that the new Smart 4ID-based approach
outperforms previous approaches in performance while si-
multaneously providing better failure semantics. We con-
tend that the our mechanism performs better because it
leverages innovations in the data plane (flexible addressing)
and the control plane (centralized local controller) rather
than relying solely on traditional ideas (routing, naming,
etc).

In summary, this paper makes the following contributions:

1. We improve the understanding of incremental deploy-
ment by identifying the key decisions that have to be
made and describing the entire design space.

2. We identify two new approaches, 4ID and Smart 4ID.
The 4ID approach utilizes flexible addressing in the
data plane, and the Smart 4ID approach additionally
leverages an intelligent control plane for better perfor-
mance.

3. We perform qualitative and quantitative comparisons
of four representative mechanisms and show that our
new Smart 4ID approach outperforms the others.

We explain the design space (in §2) using IPv6 deployment
scenarios to provide a familiar environment for the reader
and to clearly relate the design to previous work that has
focused almost exclusively on IPv6 deployment. However,
our techniques and observations apply to the deployment of
any NNA. In fact, the implementation and evaluation of our
techniques use XIA 1, which is an new network architecture
that is radically different from either IPv4 or IPv6.

The rest of this paper is organized as follows. First, we
examine the problem we wish to solve and create a design
space of possible solutions (§2). Next, we examine where
previous approaches fit within that design space, using IPv6
deployment as a case study (§3). Then, we explore the de-
sign space and develop two new approaches in (§4). We then
systematically evaluate previous designs with our two new
approaches over PlanetLab (§5) before concluding (§6).

2. DESIGN SPACE

2.1 Requirements and Deployment Scenarios
Incremental deployment implies that hosts can communi-

cate before the entire path is upgraded. This means that
part of the path between the two hosts uses some other
ONA [5, 15, 25, 30]. There may be multiple different ONAs
in use between the NNA hosts, but for the sake of clarity we
assume a single ONA technology. For example, this ONA
could be IPv4 and the NNA could be IPv6, XIA [17], or
MobilityFirst [27].

Thus deployment mechanisms need to satisfy two require-
ments: the mechanism needs to provide global reachability
for all NNA hosts in disjoint networks using the mechanism,
regardless of the characteristics of the path between a pair of
NNA hosts (a correctness requirement) and the mechanism
should do so without introducing undesirable side effects,
like increasing path stretch (a performance requirement).

In order to gain a clear picture of common issues with
deployment mechanisms, we define some common scenarios.

Disjoint NNA Clouds: One of the most common incre-
mental deployment scenarios involves two hosts in disjoint

1http://xia.cs.cmu.edu
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Figure 3: Disjoint ONA Clouds
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Figure 4: Merged Clouds

NNA “clouds” (consisting of one or more ASes or even a
single machine) wishing to communicate over an ONA (See
Figure 1).

As shown, the two gateways (an “egress gateway” F1 and
an “ingress gateway” F2) translate messages between NNA
and ONA formats on behalf of hosts in the NNA networks,
as “dual-stack routers” that understand both protocols. The
labeled functions F1 - F4 define specific tasks (egress and
ingress selection, and egress and ingress location) and are
further explored in § 2.2.

Backbone Topologies: Some deployment mecha-
nisms [4, 26, 28] opt for more logically centralized systems
such as backbones (e.g., 6bone for IPv6 or Mbone for mul-
ticast), where packets first must travel to a backbone router
before reaching their destination (see Figure 2). A better
solution would have packets travel directly to their desti-
nation (Figure 1), as diverting packets through additional
infrastructure impacts performance by increasing latency as
well as increases the potential for failures.

Disjoint ONA Clouds: After an NNA is widely used,
the ONA becomes the architecture that has difficulty be-
ing supported by the network (Figure 3). This seems like
a rather distant scenario but is commonplace in places like
China where new IPv4 addresses are already scarce, but
IPv6 addresses are plentiful [32]. Although this paper dis-
cusses incremental deployment in terms of disjoint NNA
clouds, the approaches are general enough to work for dis-
joint ONA clouds as well.

Merged Clouds: As time passes, a larger percentage
of the path between NNA hosts contain NNA routers, un-
til eventually the previously disjoint NNA clouds are now
merged (Figure 4). Deployment approaches need to take
this into account to prevent unnecessary processing over-
head when the path is fully NNA. Many current solutions
don’t account for this scenario and thus can only be used
during the initial stages of deployment and must be manu-
ally shut off.

Each scenario provides a different set of challenges to a
deployment mechanism over its lifetime. Although Figure 1
is the most common scenario, the rest of the scenarios must
also be adequately explored. In particular, we will see how
different design choices can affect how deployment mecha-
nisms handle the scenario presented in Figure 4.

2.2 Problem Breakdown
Although the scenarios presented in Figures 1 - 3 initial

seem quite different, we note that they all contain the same
high-level form:

F1 F2

F3

F4

Src Dst

Egr Igr

Where “Src” and “Dst” are the source and destination
hosts respectively, and “Egr” and “Igr” are the egress gate-
way and ingress gateway respectively. Although there are
many properties we would like a deployment mechanism to
preserve (e.g., security of a packet, the user’s intent, etc.), at
the most fundamental level, a deployment mechanism ulti-
mately requires locating an ingress and egress and providing
a means of reaching both. We focus specifically on reacha-
bility, providing explicit functions that must be satisfied:

F1 Select an egress router for packets leaving the source
network.

F2 Select an ingress router for packets entering the des-
tination network.

F3 Reach the selected egress router within the source
network.

F4 Reach the selected ingress router within the desti-
nation network.

These functions are general enough to be applied to any ar-
bitrary NNAs being deployed over any arbitrary ONA that
does not provide any built-in support for incremental de-
ployment, such as IPv4.

Two important aspects determine the high-level design
of an incremental deployment mechanism: 1) where these
functions are implemented and 2) when they are answered.
Where: These functions can be implemented either in the
control plane or in the data plane. Within each category,
there are multiple solutions for implementing the functions.

• Control Plane: Hard state at Gateway (F2, F4),
(Dynamic) Routing (F1, F3), Chosen by Local Con-
troller (F1, F2, F3)

• Packets (Data Plane): Packet carries egress and/or
ingress identifier (F3, F4)

When: Gateway selection process can be either early or
late in the forwarding process.

• Early Binding: Gateway Selection happens explic-
itly as part of packet creation (F1, F2)

• Late Binding: Gateway Selection happens implicitly
during forwarding (F1, F2)
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Egress
Selection

Ingress
Selection

Egress
Location

Ingress
Location Problems

Old Approaches:

Static Tunneling Fixed Fixed Routing
Hard-state
at Egress

Hard-state (Flex.); Manual Setup
(Manage.); Path Stretch (Perform.)

Address
Mapping None

Naming (Encoded
in Identifier) Routing

Per-packet via
Addresses

Node Bound to own Ingress (Flex.,
Perform.); Must update DNS (Manage.)

New Approaches:
Flexible

Addressing None
Naming (Encoded

Separately) Routing
Per-packet via

Fallbacks
ONA Route Tables (Perform., Manage.);

Source Selects Ingress (Perform.)

Smart
Control Plane

Chosen by
Local Controller

Naming (Encoded
Separately)

Per-packet via
Fallbacks

Per-packet via
Fallbacks

Early Binding
to Egress (Flex.)

Table 1: Comparing Approaches for Incremental Deployment

We believe that all previous deployment approaches can
be described by this model and that many schemes that
implement these functions identically are not meaningfully
different. We will show that this design space includes ad-
ditional designs that have not been used in practice. Fur-
thermore, we believe that all future deployment mechanisms
must provide ways to implement these functions and, thus,
also fall within this design space.

2.3 Evaluation Criteria
In order to provide fair comparison between deployment

approaches we define criteria with which to evaluate them.
Although the most important criteria for a deployment
mechanism is satisfying reachability, we assume that all de-
signs by definition must handle this. Thus, we instead focus
on raw performance, flexibility, and management overhead.
In the context of deployment mechanisms, raw performance
would include additional incurred latency and path stretch.
Flexibility is the ability for the approach to adapt to changes
in topology over time (as illustrated in our deployment sce-
narios) as well as failures. Management is how much human
interaction is involved during setup, failures, and mainte-
nance. We examine each approach we present based on this
criteria.

3. PREVIOUS APPROACHES
In order to better understand the impact of the design

choices, we take deployment of IPv6 (NNA) over IPv4
(ONA) as a case study, as it is the most widely studied
network architecture deployment. We compile the results
into Table 1. Although most previous work in this area has
focused on IPv6 deployment over IPv4, the approaches we
present are general in nature and can be applied to arbi-
trary NNAs. In our evaluation of these approaches (§5) we
implement these approaches using XIA [17], an architecture
radically different from IP, as the NNA.

While the IPv6 standard itself is fairly stable, there are
numerous (and varying) methods for deployment over the
existing IPv4 Internet [4, 7, 8, 18, 26, 28]. Broadly put, these
mechanisms fall into two major categories: static tunneling-
based approaches and address mapping-based approaches.
We evaluate these these two categories, explaining how their
design decisions directly affect their raw performance, flexi-
bility, and management overhead.

3.1 Static Tunnels
Static tunneling approaches provide direct connections be-

tween specific disjoint network clouds by explicitly keeping
state at specific edge gateways to form a “static tunnel” be-
tween the two clouds. Creating static tunnels between all
clouds that wish to communicate is not scalable; thus, these
approaches often comes with an additional assumption – a
backbone topology model. Internetworking has a long his-
tory with using backbone topologies for emerging technolo-
gies, e.g., MBone [29] or 6bone2. Having a backbone allows
gateway routers to keep state for one static tunnel regard-
less of the number of disjoint clouds, as opposed to one static
tunnel per disjoint cloud.

Examples of static tunneling mechanisms include
6in4 [28], AYIYA [26], and TSP [4]. The differences between
them are mostly manual (6in4) versus automatic (TSP) tun-
nel setup and whether IPv6 can be encapsulated in trans-
port layer protocols (AYIYA). Static tunneling approaches
are not as widely used as they once were given that 6bone
was decommissioned in 20063, however they are the “tradi-
tional” approach to IPv6 deployment, and, thus, provide a
good point of comparison.

3.1.1 Design Decisions

F1 : The egress is a single gateway holding tunnel state.

F2 : The ingress is a single gateway on the other side of
the tunnel also holding tunnel state.

F3 : The egress is reached by routing; all packets not des-
tined for hosts in the local network are drawn towards
the egress gateway due to routing.

F4 : The ingress is reached by encapsulating packets based
on a destination address stored within the egress gate-
way as tunnel state.

3.1.2 Tradeoffs
The major benefit of this design is simplicity, but it comes

at the cost of additional overhead. Getting onto the network
is as simple as tunneling to a backbone node, as the back-
bone facilitates communication between hosts.
Performance: Performance can be a major issue if a back-
bone node is not geographically close to the source or desti-
nation, causing unnecessarily high path latency/stretch and
therefore application latency.
2http://www.gogo6.com/page/6bone
3http://www.gogo6.com/page/6bone
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Flexibility: If a single tunnel entry point goes down, an
entire network can lose external connectivity. At this point,
the tunnel needs to be reestablished by reconfiguring router
state.
Management: Static tunneling in the IPv6 world generally
requires users (be they individuals or network operators) to
be directly involved in a tunnel setup process. Typically
this process involves contacting a “tunnel broker” in order
to establish an endpoint for the other side of the tunnel.
Tunnel brokers generally have direct access to the backbone
of the Internet itself via connections to Points of Presence
(PoPs) around the world (SixXS4, Hurricane Electric5, etc.).
After failures, tunnel reestablishment is possibly manual.

3.2 Address Mapping
Address mapping approaches cover many of today’s most

widely used IPv6 deployment mechanisms. All of these
mechanisms share the property that each host encodes an
IPv4 address of an ingress router, within their IPv6 ad-
dress. This provides a simple way for each packet to carry an
ingress address, which can be used to do per-packet encapsu-
lation at the egress router. This approach directly contrasts
with the hard-state stored at routers in the tunneling ap-
proach as each packet now contains the “state” needed to
forward to the ingress.

Examples of address mapping schemes include 6to4 [8],
6over4 [7], 6rd [14], and Teredo [18]. 6rd and/or 6to4 are the
most widely used transition mechanisms [1] as they tend to
be the most flexible; however, Teredo holds the majority of
registered IPv6 addresses on the Internet [20]. Additionally,
6to4 support is included in modern versions of both Win-
dows and Mac OS X; whereas, Teredo is only included in
Windows. The schemes themselves differ by focusing more
on NATs (Teredo) or using general IPv6 prefixes (6rd).

We take 6to4 as an example implementation, to high-
light how these mechanisms work. All 6to4 hosts have IPv6
addresses starting with the 2002:: prefix. The next four
bytes in their IPv6 address encodes the IPv4 address of the
ingress router they wish to be reached from. For example, a
host with the address prefix 2002:C000:0101::/48 wishes to
be reached through an ingress gateway with IPv4 address
192.0.1.1 (i.e. C000:0101).

3.2.1 Design Decisions

F1 : The egress is not selected, but gateways advertise
prefixes, and, thus, get selected during routing.

F2 : The ingress is encoded within the destination address
as given by name lookup.

F3 : The egress is reached by relying entirely on routing
for the given destination address prefix.

F4 : The ingress is reached by encapsulating individual
packets on the fly based on the IPv4 address stored in
destination IPv6 address within the packet.

3.2.2 Tradeoffs
This approach is very clean: receivers get to decide di-

rectly what IPv4 address they prefer to be reached from
and publish this information to DNS. However, having hosts

4http://www.sixxs.net/
5http://www.he.net/

bind to an IPv6 address that encodes an IPv4 address within
it causes numerous issues.
Performance: Binding an endhost to a specific single
ingress address can hurt performance depending on the loca-
tion of the source relative to the destination in the network.
A better solution would allow for the ingress to change dy-
namically depending on the location of the source.
Flexibility: Conflating the ingress IPv4 address and des-
tination IPv6 addresses causes issues as topologies change
over time, in addition to needing to rebind after an ingress
failure. However, having each packet carry the information
it needs to reach the destination makes the approach more
flexible than static tunneling.

6to4 and Teredo egress gateways always provide default
routes for their respective traffic. Traffic always goes to the
egress closest to the source. As clouds merge over time (as
explained in § 2.1), these gateways will continue to pull pack-
ets destined for endhosts that previously were in disjoint
clouds out into the IPv4 network, without need. 6rd ad-
dresses this somewhat as routes can be changed by ISPs, but
this provides unnecessary management overhead. A proper
solution would be to provide flexibility to choose between
using IPv4 addresses and IPv6 addresses during forwarding.
Management: if the specific ingress that a host is using
goes down, then the host first needs to pick a new gate-
way, then change its IPv6 address to encode that gateway
(and thus break all current connections), and finally update
DNS to point its new IPv6 address and wait for DNS cached
records to expire.

3.3 Native IPv6
Although not a deployment mechanism, Native IPv6 does

account for the majority of IPv6 traffic received by large-
scale content distribution networks [1]. Native IPv6 requires
an end-to-end IPv6 path from source to destination. Histor-
ically, few ISPs offer such service, but this has been changing
recently. Both Comcast in the US and KDDI’s fiber service
in Japan have offered native IPv6 support alongside their
normal IPv4 support, giving all customers the option of na-
tive dual-stack support. There are two big conclusions to
draw from this: ISPs are introducing native IPv6 support,
implying that more and more hosts are IPv6 enabled, and
that transition technologies are not being used in practice
when destinations (such as content providers) support na-
tive IPv4 as well.

4. MECHANISM DESIGN
As we’ve seen there are a wide variety of ways to perform

the four functions from § 2.2. If we were to think of the opti-
mal deployment mechanism, we would like it to be efficient,
in that it would always pick the optimal egress/ingress pair
in a dynamic fashion; thus, avoiding potential failures and
handling all scenarios in § 2.1 elegantly. This mirrors our
previous discussion of the need for both correctness and effi-
ciency in a given mechanism. The mechanism should also be
general enough to apply to arbitrary new network architec-
tures (e.g., IPv6, XIA [17], MobilityFirst [27]). We explore
how recent research in network architecture can enable new
deployment mechanisms before pinning down two distinct
new approaches: Flexible Addressing and Smart Con-
trol Plane.
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Option
Number

Egress in
Addressing

Ingress in
Addressing Provider Pros Cons

1 None ONA Address Naming Late Binding
on Egress

Non-optimal paths;
ONA Route Tables in NNA

2 NNA Address ONA Address Local Controller;
Naming

Optimal paths;
Scalable

Early Binding
on Egress and Ingress

3 NNA Address ONA Prefix Local Controller;
Naming No Early Binding Have to send to ONA prefix

4 NNA Address Name Local Controller No Early Binding High-speed name lookup

5 NNA Address None Local Controller Scoped Tunneling Not Scalable

Table 2: Unexplored Options in the Design Space. An example deployment would be IPv6 as the New Network Architecture
(NNA) and IPv4 as the Old Network Architecture (ONA).

4.1 Exploring the Design Space
Of the previous approaches (§ 3), we note that static tun-

neling approaches lack flexibility in picking egress/ingress
pairs and introduce fate-sharing issues due to the hard state
at these gateways (see Table 1). Address mapping ap-
proaches work around this by providing dynamic per-packet
encapsulation, but introduce new failure semantics by bind-
ing node addresses to their ingress’ address. Address map-
ping schemes are considered stopgap solutions and, thus, can
not deal with continued use over the lifetime of NNA’s de-
ployment (see § 2.1 and Figure 4). Both approaches are simi-
lar in what basic concepts they leverage in their mechanisms:
routing, naming, and addressing. We contend that recently
introduced concepts in the network architecture community
can provide a much clearer path to incremental deployment.
We explain three concepts: separation of addresses in pack-
ets, fallback-based forwarding, and centralized control, be-
fore showing how they can be used to enable new deployment
mechanisms.

4.1.1 Introducing Modern Concepts
Separation of Addresses: While address mapping ap-
proaches provide better performance, they fundamentally
can not provide optimal path selection in all scenarios be-
cause they conflation of ingress and destination addresses.
This makes it difficult to update the ingress and destina-
tion independently. If the architecture allows for a way
to have separate addresses within a packet [17, 27], then
many of the shortcomings of address mapping schemes can
be fixed. We could use these distinct identifiers to inde-
pendently encode an ONA address for the ingress into the
destination cloud (a sort of locator), while separately en-
coding the NNA address for the destination (an identifier),
both within a packet header. Having separate addresses in
a packet allows for simple switching of the ingress addresses
after failure, without needing the destination to rebind to a
new NNA address. In addition, separating these addresses
provides a clear division both semantically and in terms of
management and troubleshooting.

IPv6 can not support separate ingress addresses in a
straight-forward way, however NNAs like MobilityFirst [27]
provide space in a packet header to store both an endhost
identifier (i.e., the destination NNA address) as well as a
endhost locator, which we could overload as an ingress ONA
address in a fairly straight-forward way. XIA [17] provides
further support by allowing alternate means of communica-
tion (i.e., ingress ONA addresses) to be added to the network
at any point in time, seamlessly. Both architectures can sup-

port this simple switching of ingress addresses, but XIA in
particular makes the process very clean.

Fallbacks in Forwarding: A further shortcoming of ad-
dress mapping schemes is their inability to handle changes
to the network over long periods of time (see § 2.1 and Fig-
ure 4). In order to adequately handle merging of networks
over time, the ability for each router to choose between for-
warding based on the ingress ONA address or the destination
NNA address is crucial. In its most straightforward form,
we can easily handle merging of NNA clouds by having all
routers attempt to forward based on the destination NNA
address unless they don’t have an entry in their table for it,
in which case they “fallback” to the ONA and encapsulate
the packet using the ingress ONA address and continue to
forward it. IPv6 and NNAs like NDN [33] and Mobility-
First [27] do not have this capability built directly into the
network-layer. XIA [17] does allow for fallbacks, using its
flexible DAG-based addressing scheme.

Centralized Local Control: A large thrust in the network
architecture community has been towards the centralized
control of networks, referred to as “Software Defined Net-
works” [9,16,21]. Centralization can be very useful to incre-
mental deployment as well as centralization of the local net-
work graph at a local controller within a source NNA cloud
can allow the local controller to pick better ingress/egress
pairs for a given source/destination pair. Having a much
wider view of the network when compared a purely dis-
tributed approach, it is much easier for a local controller
to provide better selections, but we leave the details of this
process to other works in this area [2, 3].

4.1.2 Exploring the Options
Having both separate addresses and fallback-based rout-

ing allows us to explore the design space more fully. What
would a mechanism look like if we included both the ingress
and egress addresses in packets? Could we include some-
thing other than an ingress address in a packet (e.g., a prefix
or a name)? We explore five such options (see Table 2) be-
low and examine the first two in more detail in the following
subsections.

Option (1). relies on routing for egress selection and nam-
ing for ingress selection. Providing the optimal ingress for
an arbitrary source-destination pair would be difficult for
naming to do in a scalable fashion. A reasonable solution
would be to have the name server return multiple potential
ONA ingress addresses for a given name (as DNS does to-
day) and allow the host to choose one. The chosen ingress

276



ONA address(es) are encoded into the packet as a separate
address, which is a form of early binding.

Given the destination address, this option selects the
egress location via routing, similar to address mapping.
However, this scheme provides a better egress gateway selec-
tion by dynamically selecting the egress based on the chosen
ONA ingress address. This is done by mirroring ONA route
announcements into the source NNA cloud. This allows for
automatic selection of the best egress address for the specific
ONA ingress address, rather than a “one-size-fits-all” solu-
tion found in most address mapping schemes. However, this
requires all NNA routers in the source cloud to maintain an
ONA route table, adding additional complexity.

Option (2). still uses naming to obtain ingress, but uses
a centralized local controller (similar to an SDN) to find the
best egress. This removes the major downfall of (1.) as it
eliminates the need for ONA routing tables in all routers.
The local controller in the source NNA network selects and
routes to the best egress depending on the ingress ONA ad-
dress chosen. This can be done by either monitoring the
external route advertisements or directly probing the exter-
nal ONA path from all possible egress points. Thus, only
gateway routers need to be aware of the ONA protocol. This
provides much better performance, but weakens our failure
recovery model as it causes early binding to an egress ad-
dress for individual packets. However, it is possible for a lo-
cal controller to continually scan for failures in the network
and subsequently inform endhosts to change which egress
they use after an egress failure.

Option (3). and (4). additionally removes the early
binding issue of Option (2). However, (3). requires being
able to send to a packet to an ONA network prefix, which
may not be possible in the given ONA. (4). requires either
fast name lookup during forwarding or name lookup caching,
which would be very difficult for arbitrary-length names.

Option (5). is markedly different in that it would require
egress routers to be able to forward to an ingress without
having any information about it in the data plane. Thus,
this information would essentially come from state on the
router, like in the static tunneling approach. The major
difference here is that providing an egress address scopes
the tunnel to a particular path configured at that egress.

4.2 Pinning Down New Mechanisms
From these five options, we believe the first two provide

the best tradeoffs. The first option (which we refer to as
Flexible Addressing) uses address separation and fall-
backs, to provide an approach similar to address mapping
schemes that removes the poor failure semantics. The sec-
ond option (which we refer to as Smart Control Plane)
improves on the first by providing optimal paths (thus bet-
ter performance) through centralization of the control plane.
We devise an example mechanism in each category and com-
pare them to the previous approaches in § 3.

4.2.1 Flexible Addressing
As explained in § 4.1.2, flexible addressing is similar to

address mapping schemes, but differs in that it stores the
ingress ONA (e.g., IPv4) address as a separate address in
the packet, in addition to using fallbacks during forwarding.

We build a specific mechanism in this space, the 4ID,
that retrieves a set of possible ONA ingress addresses from

the naming server, picks one, encodes it within a packet
and then sends packets out, using routing to locate a proper
egress. As previously explained, to find the proper egress
all routers need to maintain an additional ONA route table,
forcing the network to be explicitly linked to the ONA at a
global scale, an obvious design issue.
Performance: Having individual endhosts decide which
ingress to use for a given destination proves difficult, as the
endhosts have a limited view of the network. Thus this se-
lection can lead to poor performance.
Flexibility: Separating the addresses allows for simple
changing of the ingress address without needing to change
the destination NNA (e.g., IPv6) address. Additionally, fall-
backs handle all deployment scenarios in § 2.1, providing
graceful deprecation of the mechanism. Having all the data
needed in each individual packet provides flexibility.
Management: In order to provide proper egress selection,
ONA route tables need to be stored on each NNA router,
providing additional complexity in management.

4.2.2 Smart Control Plane
Smart control plane style approaches build off of flexi-

ble addressing approaches, but further improve upon them
by removing the need for ONA (e.g., IPv4) routing ta-
bles on routers in the NNA (e.g., IPv6) source cloud, by
using centralized local control. Our specific mechanism
in this space, Smart 4IDs, works by having a logically
centralized local controller make informed decisions as to
which egress/ingress pair should be used between a given
source/destination pair.
Performance: As a local controller has a much wider view
of the network, it is much easier for it to provide better
selections of egress/ingress pairs, but we leave the details of
this process to other works in this area [2, 3].
Flexibility: As this approach builds off of flexible address-
ing, we maintain all the benefits (being able to change ad-
dresses after failures, handling all deployment scenarios)
through use of separate addresses, fallbacks, and data being
stored in-packet. However, this approach loses some flexi-
bility due to binding each individual packet to an egress.
Management: Having to maintain a local controller pro-
vides some overhead, however it is centralized.

4.3 Discussion
Differentiating from Previous Approaches: We have
shown that our example mechanisms, 4IDs and Smart 4IDs
can provide optimal path selection while simultaneously
gaining better failure semantics when compared to previous
approaches. The core of these mechanisms lie in their use of
recent research in data plane technology (Using sets of ad-
dresses in packets and fallbacks during forwarding) and con-
trol plane technology (logically centralized local controllers).

These technologies are incredibly powerful in that they
represent a fundamental change when compared to previous
mechanisms. Previous mechanisms rely entirely upon time-
tested familiar concepts (routing, naming, hard-state, etc).
As we’ve seen, all of these mechanisms have major draw-
backs. Thus, we propose that new concepts (i.e., using sets
of addresses, fallbacks, and local controllers) are much bet-
ter suited to support incremental deployment. We contend
that any network architectures that can support these new
technologies can also easily provide straightforward incre-
mental deployment. In §5 we show that levering these new
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Performance Flexibility Management

Static Tunneling X Stretch from Backbone X Hard State at Egress X Manual Setup
Address Mapping X Bound to Ingress X Bound to Ingress X Updates require DNS Propagation

X Per-packet Data

Flexible Addressing X ONA Routing Table X Separate Addresses X ONA Routing Table
X Source Selects Ingress X Fallback-based Forwarding

X Per-packet Data
Smart Control Plane X Local Controller X Separate Addresses - Local Controller

X Fallback-based Forwarding
X Per-packet Data
X Early Binding to Egress

Table 3: How the Approaches Satisfy the Evaluation Criteria

technologies in the data plane and the control plane provide
much better performance and failure semantics.

Multiple Technologies: Our smart 4ID mechanism has
the added benefit that the only nodes within the network
that need to understand anything about the ONA are the
gateway routers (which would need to interoperate with the
ONA anyways) and the local controller. Thus, the rest of
the NNA network can evolve completely independently of
the core network “fabric”, allowing for greater changes in di-
versity and functionality within the network as explained in
Fabric [10]. If we take XIA [17] as an example ONA and
IPv4 as an example NNA, we would be effectively building
is a layered version of the Fabric model: XIA would be the
“edge” with an IPv4 “fabric”, where IPv4 acts as an “edge”
with an MPLS “fabric” at its core. Thus, any upgrades to
IPv4 network (say to IPv6, multicast, DTN, or new archi-
tectures like SCION [34]) can be done independently of XIA,
only requiring necessary upgrades at the local controller and
the gateway routers that interface with the newly upgraded
network, thus allowing multiple technologies to be in use.
Smart 4IDs however do not cover a scenario where a source
NNA cloud (e.g., XIA) is connected to multiple different
ONA technologies (e.g., IPv4 and IPv6) directly. While pos-
sible with a truly flexible addressing scheme, such as XIA’s
DAG based addressing [17], we leave the analysis of such a
mechanism to future work.

Fault Tolerance vs Throughput: If we assume that an
architecture has enough flexibility to encode multiple poten-
tial ONA ingress addresses within a single packet (for exam-
ple XIA [17]), then this provides an interesting tradeoff be-
tween fault tolerance and throughput. Allowing multiple in-
gresses addresses within a packet (to be used in the event of
a failure of the first ingress) allows for very strong resilience
to failures, but the overhead of including these additional ad-
dresses in every packet can greatly lower throughput, espe-
cially as the number of additionally included addresses gets
close to the MTU size. Conversely, an architecture could
allow for the endhost to choose to not include an ingress ad-
dress at all (lowering the total bytes in the header), allowing
for increased throughput at the cost of resilience to failures.
This flexibility of an endhost to choose between fault toler-
ance and throughput at a per-packet level warrants further
evaluation, which we leave to future work.

Other Deployment Concerns: Although we focus specif-
ically on the technological concerns of incremental deploy-
ment of new network-layer architectures, there are other
significant concerns that prevent rapid adoption. Both the
economic model [24] an NNA has, as well as its ability to
enforce policy [31] are rapidly becoming first-order concerns

when designing NNAs. However, even the NNA with the
most complicated policy handling and economic incentives
must still have the basic ability to provide reachability from
some source to some destination. Thus, we contend that the
mechanisms we discuss are general enough to apply to these
NNAs as well, but we leave the analysis of and integration
with such networks to future work.

5. EVALUATION
To evaluate the different general approaches we’ve pre-

sented (Static Tunneling, Address Mapping, Flexible Ad-
dressing, and Smart Control Plane) in Table 1, we pick
four specific mechanisms that we think are representative
of each of the four categories: 6in4 [28], 6rd [14], 4IDs,
and Smart 4IDs. We quantitatively and qualitatively com-
pare the four mechanisms in terms of their performance
(path latency, path stretch, latency presented to applica-
tions), their flexibility (failure detection and recover time),
and their management/complexity overhead, using Planet-
Lab [11], a large-scale global test bed. We wish to find a
mechanism that provides optimal path selection (i.e. low
path latency, path stretch, and application latency) that si-
multaneously providing good failure semantics and low man-
agement/complexity overhead. We see that Smart 4IDs are
the clear winner in terms of their performance and failure
semantics, while providing fairly low management overhead.
We summarize the qualitative portion of our results in Ta-
ble 3.

5.1 Topology Setup and Methodology
We conduct our experiments using approximately 200

PlanetLab nodes across the United States. For each met-
ric, we simulate approximately 100 deployments over each
of the four mechanisms. As XIA [17] provides both the sup-
port for distinct addresses as well as network fallbacks within
its flexible DAG addressing scheme, we choose to implement
all 4 mechanisms on top of it, for simplicity of comparison.

For the 6in4 (static tunneling) approach, we create a back-
bone similar to the Abiline backbone [19]. We create the
topology seen in Figure 5, using the red nodes. We con-
struct a static tunnel between each pair of connected nodes
in the backbone using a UDP socket. From the backbone
hosts’ perspective, they are connected via a single hop, es-
sentially forming an overlay. This is reasonable, as backbone
nodes would typically be connected by long, direct links to
their immediate neighbors.

We then randomly select two hosts from the remaining
PlanetLab nodes and connect each to their respectively clos-
est backbone node, based on latency. We can see an example
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Figure 5: An Example Topology used during 6in4 Experi-
ments

Figure 6: An Example Topology used during
6rd/4ID/Smart 4ID Experiments

of this with the blue nodes in Figure 5, labeled “A” and “B”.
This simulates a typical 6in4 scenario as these two nodes
can now talk to each other through the backbone.

For the other three mechanisms (6rd, 4IDs, and Smart
4IDs), we start with a different topology, as they do not
utilize a backbone. For these three scenarios, we pick 5 spe-
cific nodes as a constant network deployment and then test
by constructing a second network of 5 random nodes, and
gather statistics based on the three different mechanisms.
This models a single NNA cloud (the control network) wish-
ing to communicate with hosts in a variety of different NNA
clouds (the test networks) through the broader ONA Inter-
net. Although the nodes in the test network are random,
they maintain the constraint that they are less than 15 ms
away from the central node under test.

Our constant network deployment are the red nodes in
Figure 6, labeled “C”. We choose a star topology as our
interest is gateway selection rather than local network con-
figuration. Our randomly selected network (seen in blue in
Figure 6 and labeled “D”) also utilizes a star topology for
the same reason. The nodes at the center of each star are
the source and destination nodes being evaluated.

We evaluate the three remaining mechanisms in this topol-
ogy as follows: as 6rd embeds an ONA ingress (IPv4) ad-
dress within an NNA (IPv6) address, we model this by hav-
ing all test networks use the same ingress into the control
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Figure 7: Latency using Different Deployment Mechanisms

network (located in Denver), regardless of location. This
models 6rd as a host’s NNA (IPv6) address encodes a spe-
cific ingress’ ONA (IPv4) address that is used in each packet.

For our 4ID approach, the global name server returns a list
of ingresses, of which we pick from with equal probability,
similar to anycast.

Finally, our Smart 4ID approach can make use of a cen-
tralized intelligent control plane to find optimal paths, so we
model this in our evaluation by having the local controller in
each domain do a pair-wise ping between all possible gate-
ways to select the gateways from both networks that are
closest to each other.

5.2 Microbenchmarks
We conduct microbenchmarks over each experimental de-

ployment for each of the four mechanisms by measuring the
latency and hop count. For latency we measure the end-to-
end path latency by taking the average over 50 pings be-
tween the source and destination hosts under test. We drop
the 10% of data with the highest latency to remove tran-
sient outliers from our data due to errors such as scheduling
artifacts.

To measure hop count, in the 6in4 (backbone) case, we
count the number of IPv4 hops between the test nodes and
their closest backbone node and then add the number of hops
between nodes within the backbone. The number of hops
within the backbone will be low, as we consider each back-
bone node to be directly connected to each of its neighbors.
For the other three mechanisms, we measure the number of
hops between the node under test and its actual gateway
ISP router (by finding the first router in traceroute not of
the same domain), when conducting a traceroute to its se-
lected egress. We add this to the actual hop count between
the selected ingress / egress gateway pair. We do this to
provide a realistic estimate of the number of hops to reach
the egress router within the source network.

We can see in the results for our latency experiments (Fig-
ure 7) that the data is roughly as we expect: 6in4 (backbone)
performs worse than the more direct approaches, and smart
4IDs perform the best. We see that on average, Smart 4ID
outperforms 6in4 by halving latency, and is very close to
halving 6rd’s latency as well. Interestingly enough, 4IDs
perform very similarly to 6rd. This is due to 4IDs requiring
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Local Failures Remote Failures

6in4 New Tunnel Setup (seconds)
New Tunnel Setup (seconds) +

BGP Propagation Time (minutes)
6rd BGP Propagation Time (minutes) DNS Update Propagation Time (hours)

4IDs BGP Propagation Time (minutes) Select new Ingress (instant)
Smart 4IDs Select new Egress (instant) Select new Ingress (instant)

Table 4: Local and Remote Failure Recovery Times
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Figure 8: Path Stretch using Different Deployment Mecha-
nisms

an endhost to select which ingress to use rather than always
selecting the same ingress (as with 6rd). In our evaluation,
endhosts pick from the possible ingresses at random in 4ID
experiments, thus we expect the average over many trials to
be similar to 6rd for random deployments.

This decrease in latency seen in smart 4IDs when com-
pared to other approaches directly impacts application per-
formance but also points to the fact that packets are spend-
ing an unnecessarily long time in the network in other ap-
proaches, implying wasted network capacity and manage-
ment overhead.

We see similar results for hop count (Figure 8). On aver-
age the path stretch of needing to first reach the backbone
in 6in4 causes an increase of 37% when compared to Smart
4IDs. Again, 4IDs and 6rd perform similarly, due to the ran-
dom ingress selection at endhosts in our 4ID experiments.
An increase in hop count underlines the same information
that latency does: Smart 4IDs greatly cut down on the num-
ber of routers that need to process the same packet, saving
network operates both capacity and management overhead,
as well as reducing potential points of failure.

5.3 Application Workloads
To provide a picture of end-to-end performance tradeoffs

of the various approaches, we conducted a web page fetch
over each deployment experiment and recorded its time to
complete. We host the XIA main page6 along with all
sub-resources on one node under test. The remaining node
fetches the main page from the first node as well as all sub-
resources.

6http://www.xia.cs.cmu.edu/
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Figure 9: Webpage Latency using Different Deployment
Mechanisms

The results are shown in Figure 9. Here we can clearly
see the impact that small differences in path latency have
on applications. Again, the results are not surprising; Smart
4IDs once again see clear benefits but 6in4 is quite far be-
hind, greatly impacting the perceived speed of the network.

5.4 Failure Semantics
We evaluate the failure semantics of each model by com-

paring the time required to detect remote gateway failures
in addition to providing a sense of the time scale for recov-
ery from local and remote failures. For detecting remote
gateway failures, we assume that hosts are aggressive and
will report a remote gateway failure if the ingress it wishes
to use does not respond to pings after 2*RTT seconds. We
plot this in Figure 10. We can see that 6rd, 4ID, and Smart
4ID perform similarly, but 6in4 performs much worse. This
is due to the fact that in the first three schemes, the remote
gateway is exposed to the source as part of the addressing
scheme, making it possible to check the status of the gate-
way. However, in static tunneling schemes like 6in4, these
gateways are not directly exposed to the source node and
thus full end-to-end status checks must occur, resulting in a
significantly longer detection time.

For failure recovery, we present the time-scales required
in Table 4. We can see that for 6in4, a failure requires the
reestablishment of a tunnel. In the worst case, this could
require network manager intervention, but we assume that
tunnel reestablishment happens automatically over a few
seconds. BGP propagation time shows up in a few cases,
where nodes need to be informed of a new egress or tunnel
endpoint in schemes that are reliant on routing. We assume
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Figure 10: Detection Time for Remote Failures

this propagation time to be close to one or two minutes, as
seen in [23].

The major differentiating factor here is 6rd’s name server
update after an address change. As 6rd addresses embed an
ONA (IPv4) address, changing this address after gateway
failure requires a change to DNS to update this ingress ad-
dress. DNS propagation time is highly variable depending
on caching timeouts. Typically this could be on the order
of tens of minutes to hours.

4IDs avoid this issue entirely as the ONA (IPv4) addresses
contained in the packet are distinct from the destination’s
address. Changing the ingress address after failures solely
involves replacing the ingress node address in the packet,
as opposed to binding to a completely new address. This
has the added benefit of allowing higher-layer sessions (e.g.
TCP) to stay active across ingress failures.

We can see that clearly Smart 4IDs provide the best failure
semantics as a local egress failure can be recovered from by
having the local controller inform hosts to use a new egress.
4IDs, however, rely on routing to locate a suitable egress
(like 6rd), and thus must wait for new route propagation.
Additionally, like 4IDs, smart 4ID nodes can be given a set of
possible ingresses and thus can select a new one immediately,
once an ingress goes down.

5.5 Management and Complexity
In addition to quantifiable metrics like performance and

failure semantics, an important aspect of any architectural
deployment is the amount of overhead in management and
complexity. The specific issues we focus on are: which nodes
in the network can cause end-to-end failures, where state is
stored, what new devices need to be deployed, and what
existing services need to be extended.

We examine each mechanism in turn and find that more
complicated schemes like Smart 4IDs add some complexity
to the network, but do so in a way that is easy to manage.

In 6in4 end-to-end communication can fail if the tunnel
fails, potentially requiring manual recover, but TCP con-
nections can persist across failures. Hard-state is stored at
the tunnel gateways, but all other routers and hosts store
nothing. No additional infrastructure is required beyond the
tunnel gateways.

In 6rd ingress failure causes a host to rebind to a new
address, thus breaking TCP sessions, and requires a naming
update. Hosts must know their own ingress, which is essen-
tially soft-state. No additional services need to be deployed,
but routing needs to be updated over time to track changes
in topology, causing issues with deprecation over time.

4IDs can cope with path failures by simply choosing a new
ingress address, even preserving TCP sessions. All source
network routers need to keep track of an ONA (IPv4) rout-
ing table, potentially adding a lot of additional state. No
new services need to be deployed, but the name server needs
to be extended to return ingress ONA (IPv4) addresses.

Smart 4IDs can also cope with path failures by simply
updating their egress and ingress addresses, also preserv-
ing TCP sessions. One additional dependence is created as
each node relies on its local controller for gateway selection.
Only gateway routers and the local controller need to keep
additional ONA (IPv4)-related state, greatly reducing the
complexity from 4IDs. This approach does require a new
piece of infrastructure, the local controller. Like in 4IDs,
the name server would need to be extended to return ingress
ONA (IPv4) addresses.

While it is clear that Smart 4IDs provide the best perfor-
mance while simultaneously providing clean failure seman-
tics, the mechanism’s impact on management and complex-
ity is not as straightforward. While it greatly reduces com-
plexity in the network from 4IDs, having the additional man-
agement overhead of a local controller when compared to
simpler schemes 6in4 makes it harder to say that Smart 4IDs
are uniformly better. We argue though that even in com-
parison to 6in4, some aspects of management are reduced,
because the solution is localized. In the case of 6in4, failures
require reestablishing tunnel endpoints in both networks,
requiring coordination between multiple parties. Thus, al-
though Smart 4IDs introduce local controllers into the net-
work, there management overhead is not high as they are
entirely localized.

6. CONCLUSION
We have shown, despite the wide variety of deployment

mechanisms in use today, they only differ in how they answer
four fundamental questions: selecting an egress, selecting an
ingress, reaching the egress, reaching the ingress. Even with
such variety, we see multiple approaches in this design space
that are curiously absent from real-world deployment. Two
approaches we describe are particularly intriguing and we
explore them further.

We find that these two approaches borrow from work in
the network architecture community. The first deployment
approach “Flexible Addressing” leverages the flexibility in
the data plane to encode ingress ONA addresses within
a packet as a separate address from the destination’s ad-
dress, as well as use “fallbacks” to flexibly choose between
addresses during forwarding time in the source network, pro-
viding better failure semantics. Our second deployment ap-
proach, “Smart Control Plane” introduces an intelligent con-
trol plane to provide both an ingress address and egress
address within the packet to be used at forwarding time,
further reducing complexity in the network.

Incremental deployment of network architectures is non-
trivial. We have shown that the performance differences
in wide-area experiments are rather striking. The mecha-
nisms we propose provide new alternatives, but more im-
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portantly we introduce a fundamental shift away from using
solely familiar concepts (routing, naming, etc) to utilizing
both newly introduced data plane and control plane con-
cepts. These new concepts provide insight into a much more
straightforward path to incremental deployment.
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