
Mechanized Network Origin and Path Authenticity Proofs

Fuyuan Zhang
CyLab, CMU

fuzh@andrew.cmu.edu

Limin Jia
ECE & INI, CMU

liminjia@cmu.edu

Cristina Basescu
ETH Zürich

cba@inf.ethz.ch

Tiffany Hyun-Jin Kim
CyLab, CMU

hyunjin@cmu.edu

Yih-Chun Hu
UIUC

yihchun@uiuc.edu

Adrian Perrig
CyLab, CMU/ETH Zürich
aperrig@inf.ethz.ch

ABSTRACT
A secure routing infrastructure is vital for secure and reliable Inter-
net services. Source authentication and path validation are two fun-
damental primitives for building a more secure and reliable Inter-
net. Although several protocols have been proposed to implement
these primitives, they have not been formally analyzed for their
security guarantees. In this paper, we apply proof techniques for
verifying cryptographic protocols (e.g., key exchange protocols) to
analyzing network protocols. We encode LS2, a program logic for
reasoning about programs that execute in an adversarial environ-
ment, in Coq. We also encode protocol-specific data structures,
predicates, and axioms. To analyze a source-routing protocol that
uses chained MACs to provide origin and path validation, we con-
struct Coq proofs to show that the protocol satisfies its desired prop-
erties. To the best of our knowledge, we are the first to formalize
origin and path authenticity properties, and mechanize proofs that
chained MACs can provide the desired authenticity properties.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Security and pro-
tection; C.2.2 [Network Protocols]: Protocol verification

Keywords
Origin authenticity, path authenticity, secrecy, formal methods, mech-
anized proofs

1. INTRODUCTION
A secure routing infrastructure is central to providing secure and

reliable Internet services. The current Internet routing infrastruc-
ture has many known security issues [38, 16]. Source authen-
tication and path validation are two fundamental building blocks
for security mechanisms that can mitigate some of these issues.
Source authentication allows routers to validate whether a received
packet indeed originated from the claimed source. Path validation
allows routers to verify whether received packets indeed travelled
on the source-selected path. Source authentication and path valida-
tion are key to implementing mechanisms such as path compliance,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS’14, November 3–7, 2014, Scottsdale, Arizona, USA.
Copyright 2014 ACM 978-1-4503-2957-6/14/11.̇.$15.00.
http://dx.doi.org/10.1145/2660267.2660349.

packet attribution, and protection against redirection of flows. For
instance, path validation provides a way to enforce path compli-
ance according to the policies of ISPs, enterprises, and datacenters.
Without it, a malicious ISP can use an inferior path while claim-
ing to its client that it forwarded the packet on the premium path,
incurring greater charges.

Several protocols for source authentication and path validation
have been proposed; however, their security guarantees have not
been formally verified [31, 9, 39, 37]. So far, the state-of-the-art
security analysis in this space is limited to enumerating attack sce-
narios and arguing how the proposed protocol can defend against
those attacks. In this paper, we apply proof techniques for verify-
ing cryptographic protocols (e.g., key exchange protocols) to the
verification of source authentication and path validation protocols.

Analyzing network protocols is far more complex than analyz-
ing cryptographic protocols, as the analysis needs to consider ar-
bitrary network topologies. Furthermore, the protocol programs as
well as the properties are recursive, often bound by the size of the
network. If we were to apply model checking tools for analyz-
ing cryptographic protocols naïvely, we would have to fix the size
of the network topology and limit ourselves to verifying proper-
ties specific to a set of topologies. It is unclear how to use these
model checking tools to prove a general property that holds for all
topologies. In some special cases, small-world theorems have been
attempted for simpler ad hoc wireless protocols [20], where only a
finite number of topologies need to be checked to conclude that a
property holds on all topologies. Unfortunately, to the best of our
knowledge, general small-world theorems applicable to verifying
path validation protocols do not exist. Therefore, model checking
techniques cannot be immediately applied to proving properties of
these protocols. As a first step towards understanding the formal
aspects of these source authentication and path validation proto-
cols, we manually construct proofs of general security properties
that are independent of the network topology.

Several proof systems exist for reasoning about protocols [22,
23, 25, 40]. Paulson showed how to encode the network adver-
sary model and the protocol, and prove properties of protocols in
Isabelle/HOL [40]. PCL is a program logic that includes compo-
sitional reasoning principles for protocols [22]. Several protocols
have been verified using PCL [41]. LS2 generalizes PCL and pro-
vides a set of reasoning principles for deriving trace properties of
programs that run concurrently with adversaries [23]. LS2 can be
used to reason about protocols, as well as general system designs.

Because of its generality, we use LS2 as our reasoning logic.
We encode LS2 in Coq using shallow embedding, a technique fre-
quently used in encoding one proof system in another (e.g., the
encoding of Ynot [36]). LS2-specific inference rules are isolated
in a monad. Other generic inference rules such as first-order logic

rules are not encoded; instead, Coq’s logic is directly used when
constructing LS2 proofs. We instantiate LS2 with protocol-specific
data structures, predicates, and axioms, which are also encoded in
Coq. Shallow embedding allows us to use Coq’s libraries and tools
and enables us to efficiently construct proofs.

We analyze the OPT protocols that use chained Message Authen-
tication Codes (MACs) to provide source authentication and path
validation for routers [29]. These protocols have two phases: key
setup and packet forwarding. We prove the secrecy and authentic-
ity of keys of the key setup phase, and origin and path authenticity
properties of the forwarding phase. To the best of our knowledge,
we are the first to formalize origin and path authenticity properties
of packet forwarding provided by chained MACs, and construct
machine-checkable proofs of these properties.

More concretely, this paper makes the following contributions:

• We encode LS2 and basic constructs for reasoning about cryp-
tographic protocols in Coq.

• We formalize and construct machine-checkable proofs of the
secrecy and authenticity properties of the key setup protocol.

• We formalize and construct machine-checkable proofs of the
origin and path authenticity properties of the forwarding pro-
tocol.

The rest of this paper is organized as follows. In Section 2, we
review LS2 and present the protocols that we verify. In Section 3,
we show our Coq encoding of LS2 and of protocol-specific reason-
ing constructs. Then, in Sections 4 and 5, we explain our formal
definitions of security properties and discuss our proof techniques.
We show attacks to alternative protocol designs identified during
the proof process and discuss the connection between prevented at-
tack scenarios and the verification results in Section 6. In the end,
we discuss related work in Section 7.

The proof for the key setup protocol described in this paper has
1092 lines of Coq code, the proof for the forwarding protocol has
3788 lines of code, and the encoding of both protocols has 2657
lines of code. The basic definitions including the state monad and
protocol-specific constructs are an additional 1566 lines of code. It
took approximately two person months to complete the proofs. The
Coq source files are available for download at the following URL:
http://www.ece.cmu.edu/ liminjia/net-verif.

2. BACKGROUND
We briefly review the program logic we use for verification and

explain the OPT source authentication and path validation protocol.

2.1 Reasoning Logics
LS2 is a program logic for deriving properties of programs that

run in parallel with other programs, including programs controlled
by an adversary [23]. Subsequent work extends LS2 and intro-
duces a compositional reasoning framework for interface-confined
adversaries [25]. A network consists of both trusted nodes that run
the prescribed protocols and adversarial nodes that run arbitrary
code. These adversaries are limited in their capabilities. We as-
sume a variant of the Dolev-Yao network attacker model (explained
in Section 2.2). Therefore, these two proof systems are well suited
for reasoning about network protocols. We use the core reason-
ing principles formalized by Garg et al. [25] and refer to this proof
system as LS2 for the rest of this paper.

The semantics of LS2 assumes interleaving executions of system
components, some of which can be adversarial. Each component is
called a thread and is assigned a unique thread ID. Each thread is
represented as a tuple of the thread ID, the program that the thread

is executing, and a local execution environment. A thread makes a
transition step if its program makes a step, and the system makes
a transition if one of the threads makes a transition. A trace is a
sequence of transitions of the system. Each transition is associated
with a time point, denoting the time when the transition takes effect.
A system’s behavior is modelled as the set of traces generated from
the initial configuration.

The formal properties of a system are specified as properties of
its traces, using first-order logic formulas. Predicates that spec-
ify actions of threads, such as sending messages, take a time point
as an argument, indicating when that action happens. Using these
time points, we can encode temporal logic formulas, and, therefore,
specify safety properties (informally, nothing bad has happened so
far). Many desired properties of protocols are safety properties.

Trusted principals are modelled as threads running programs cor-
responding to prescribed protocols, and adversaries are modelled as
threads running arbitrary code. We explain how we encode adver-
sary’s capabilities in Section 3.2.

One key feature of LS2 is that program assertions include both
partial correctness and invariant assertions. A partial correctness
assertion specifies properties of traces that contain the complete
execution of that program. An invariant assertion specifies proper-
ties of traces that contain unfinished execution of that program. In-
variant properties are crucial to proving security properties; safety
properties should hold not only after the program terminates, but
also throughout the execution of the program. Section 3 presents
detailed inference rules for LS2. For a full description of LS2 and
its soundness, please refer to Garg et al.’s work [23, 25].

LS2 is a general logic that is meant to be instantiated with domain-
specific definitions for reasoning about specific applications. To
reason about protocols using cryptographic functions, LS2 needs
to be extended with relevant definitions and axioms. PCL [22]
has definitions of many such data structures and axioms. For our
proofs, we reuse and refine definitions from PCL.

2.2 Origin and Path Trace (OPT)
OPT is a protocol that supports source authentication and path

validation [29]. We have verified both OPT and the extended OPT
protocols proposed in [29]. In this paper, we focus on explaining
the verification of the extended OPT, as it provides stronger secu-
rity guarantees. The analysis of OPT is analogous, and we refer
interested readers to our companion technical report [49] for these
details. For the rest of this paper, we refer to the extended OPT
protocol simply as OPT.

OPT enables all entities (e.g., routers, switches, middleboxes) on
the path to authenticate the source and the content of the received
packet, and to validate the path on which the packet traveled. OPT
assumes that each router R in the network has a public-private key
pair. A router R’s key pair is denoted by pk(R), pk−1(R). OPT
has two phases: key setup and packet forwarding. During the key
setup process, each intermediate router on the source-selected path
sets up two symmetric keys to be shared with the source and the
destination, respectively. The destination also sets up a symmetric
key shared with the source. Once the key setup process is finished,
the source, routers, and the destination use these keys to compute
and verify MACs of forwarded packets.

2.2.1 Attacker Model
We use a variant of the Dolev-Yao attacker model. We consider

attackers that can send and receive messages intended for them,
compute cryptographic functions using the keys that they have, and
decompose and construct messages based on the messages and keys
they know. Unlike Dolev-Yao attackers, our attackers cannot inter-

http://www.ece.cmu.edu/~liminjia/net-verif

fverify(path , keysigs , pk , pk−1 , dir) =
match (path , keysigs) with (), ()⇒ ret()
| (path ′, rt), (keysigs ′, (c, sig))⇒
k = dec(c, pk−1);
verify(sig , (k , pk , dir), pk(rt));
keys = fverify(path ′, keysigs ′, pk , pk−1 , dir);
ret(k , keys)

| _⇒ stuck

source() =
(D , pkS , pkS−1 , pkD , path) = pickSession();
send(S ,D , pkS , pkD , path, (), ());
keysigsS = recv;
keysS = fverify((path,D), keysigsS , pkS , pkS−1 , upstream);
acceptS(self, D , path , keysS , pkS)

dest() =
(S ,D , pkS , pkD , path, keysigsS , keysigsD) = recv;
(path ′,S ′, pkS ′, pkD−1) = lookupSession(pkD , self);
if path ′ = path && pkS = pkS ′ && S = S ′

then keysD = fverify(path , keysigsD , pkD ,
pkD−1 , downstream);

acceptD(S , self, path , keysD , pkD);
kS = prf(SVS(self), hash(pkS));
ckS = enc(kS , pkS);
sigS = sign((kS , pkS , upstream), pk−1(self));
send((keysigsS , (ckS , sigS)))

router() =
(S ,D , pkS , pkD , path, keysigsS , keysigsD) = recv;
kS = prf(SVS(self), hash(pkS));
ckS = enc(kS , pkS);
sigS = sign((kS , pkS , upstream), pk−1(self));
kD = prf(SVD(self), hash(pkD));
ckD = enc(kD , pkD);
sigD = sign((kD , pkD , downstream), pk−1(self));
send(S , D , pkS , pkD , path ,

(keysigsS , (kS ,sigS)), (keysigsD , (kD , sigD)))

Figure 1: Key setup.

cept messages not meant for them, or inject messages into part of
the network that they are not directly connected to. This is a rea-
sonable model as our attackers represent malicious network nodes
(e.g., ISPs).

2.2.2 Key Setup (DRKey Protocol)
The key setup protocol of the OPT protocol is called Dynami-

cally Recreatable Key (DRKey) protocol. The pseudo code of the
DRKey protocol is listed in Figure 1. We write S to denote the
source node and D to denote the destination node. The source
could choose different paths to send packets to the destination. To
distinguish between these paths, the protocol uses the notion of ses-
sions. For each session, the source chooses a path to forward pack-
ets along and generates a public-private key pair (pkS , pkS−1);
and the destination generates the pair (pkD , pkD−1). pkS−1 and
pkD−1 are kept secret. Subsequently, pkS and pkD are used to
generate the symmetric keys between the source and each router,
and between the destination and each router, respectively.

Each session is uniquely identified by the tuple (S , D , pkS , pkD ,
path). The source and the destination exchange pkS and pkD at
the beginning of the key setup phase by exchanging signatures of
relevant fields of the session tuple using their long-term key pairs.

The source continues the key setup phase by sending the session
tuple to the first router on the intended path. When the router re-
ceives the packet, it generates a symmetric key (kS) for the source
and a symmetric key (kD) for the destination as follows.

kS = prf(SVS(self), hash(pkS))
kD = prf(SVD(self), hash(pkD))

Here, “self” refers to the identity of the principal that runs this pro-
gram. Each router R has two local secrets, SVS(R) and SVD(R).
The former is used to compute the symmetric key shared with the
source and the latter the key shared with the destination. We write
prf to denote pseudo random functions. The advantage of gener-
ating keys in this manner is that routers do not need to store these
keys, as they can be efficiently recomputed on the fly, assuming
that pkS and pkD are contained in each packet header.

The router then encrypts the keys using the session public keys
of the source and the destination, pkS and pkD , respectively, and
signs the keys to attest to their authenticity. The router signs two
triples: (kS , pkS , upstream) and (kD , pkD , downstream), where
downstream and upstream indicate for whom the key is intended
(i.e., upstream for the source, and downstream for the destina-
tion). The router appends the pair of the encrypted key and sig-
nature to the list of key and signature pairs already in the packet
header and sends the packet to the next router.

When the destination receives a packet, it first checks that the
session information (the source, the path, and source’s session pub-
lic key) contained in the packet is valid. Then, it decrypts the keys
and verifies the signatures of the keys. If the verification succeeds,
the destination accepts all the keys in the packet denoted keysD .
The destination then generates a symmetric key for the source and
sends to the source the pair of the encryption and signature of this
key (kS , sigS), together with the encryption and signature pairs
generated by routers. Similarly, the source only accepts the keys
after successfully verifying all the signatures in keysigsS .

2.2.3 Forwarding
A code snippet of the forwarding protocol is presented in Fig-

ure 2. There are three main data structures: (1) PVFS (path valida-
tion field for the source), (2) OPV (origin and path validation field
for the routers), and (3) PVFD (origin and path validation field for
the destination). Each data structure is indexed with a natural num-
ber i corresponding to its position on the intended path. Given a
path R1, R2,..., Rn, we write KSi to denote the symmetric key that
the source and router Ri have shared during key setup. We write
KD to denote the symmetric key that the source and the destination
share. We write KDi to denote the symmetric key that the destina-
tion and routerRi share. Validation fields are computed as follows.

PVFS0 = mac(KD, (hash(pkt)))
PVFSi = mac(KSi, (PVFSi−1))
OPVi = mac(KSi, (PVFSi−1, Ri−1, hash(pkt)))
PVFD0 = PVFS0

PVFDi = mac(KDi, (PVFDi−1, Ri−1, hash(pkt)))

The source S computes PVFS0, PVFD0, and all the OPVi

fields, and includes them in the packet header. The recursive func-
tion compPvfOpvs (on the 3rd line) uses the keys shared between
the source and the routers to compute the OPVi and PVFSi fields.
S sends a packet that includes in its header: S , D , path , the hash
of the source public key (hash(pkS)), the hash of the destination
public key (hash(pkD)), PVFS0, PVFD0, the list of OPVi for all
routers on the path (opvs), and the payload of the packet pkt .

When router Ri receives a packet, it first recomputes the sym-
metric keys based on the key hash fields in the header as follows:

source() =
(pkt , pkS , pkD , D , path , keys , kD) = pick ;
pvf0 = mac(kD , hash(pkt));
(pvfS , opvs) = compPvfOpvs(path , keys , pkt , self, pvf0);
send(self, D , path , hash(pkS), hash(pkD),

pvf0 , pvf0 , opvs , pkt)

router() =
R = pickNeighbor;
(S , D , path , kSh , kDh , pvfS , pvfD , opvs , pkt) = recvFrom(R);
fCkVrf (opvs , mac((prf(SVS(self), kSh)), (pvfS , R, hash(pkt)));
acceptRt(pkt , pvfS , R, kSh);
pvfS ′ = mac((prf(SVS(self), kSh)), pvfS);
pvfD ′ = mac((prf(SVD(self), kDh)), (pvfD , R, hash(pkt)));
send(S , D , path , kSh , kDh , pvfS ′, pvfD ′, opvs , pkt)

dest() =
R = pickNeighbor
(S , D ′, path ′, kSh , kDh , pvfS , pvfD , opvs , pkt) = recvFrom(R);
keys = SessionlookUp(S , self, kSh , kDh , path ′);
(pvfD ′, _) = fCkPvfD(pkt , mac(prf(SVS(self), kSh), hash(pkt)),

keys , path ′, S);
If self = D ′ && path ′ = (path1,R) && pvfD = pvfD ′

then acceptDst(S , path , keys , pkt , pvfD , kSh , kDh ,
(prf(SVS(self), kSh));

else stuck

Figure 2: Code snippet for origin and path validation.

KSi = prf(SVS(Ri), kSh), and KDi = prf(SVD(Ri), kDh). Then
Ri computes its orgin path verification field opv : opv = mac(KSi,
(pvfS , R, hash(pkt))), where pvfS is the path validation field in
the header and R is the preceding router.
Ri only accepts the packet if opv is the same as the origin path

validation field included in the header. Finally,Ri computes PVFSi

and PVFDi using the pvfS and pvfD fields and sends out the
packet with updated pvfS ′ and pvfD ′.

When the destination receives a packet, it searches its local state
and finds the keys shared with the routers and the source, based
on the path, the source, and the hashes of the public keys in the
packet. The destination computes PVFDn based on the path, the
hash of the payload, and the list of keys using a recursive function
fCkPvfD . The destination accepts the packet only if the computed
PVFDn is the same as the one in the packet header.

3. ENCODING OF LS2 AND PCL
We now present the encoding of LS2 and definitions and axioms

specific to analyzing protocols.

3.1 Shallow Embedding of LS2

LS2 inference rules derive invariant and partial correctness prop-
erties of a program that interacts with adversaries. There are two
approaches to encode LS2 in Coq. One is to define all constructs
of LS2 in Coq, and the other is via shallow-embedding, which uses
much of Coq’s logical reasoning capability directly and places LS2-
specific reasoning rules in a monad. The main advantage of the
latter is that many of Coq’s built-in libraries and automation tech-
niques can be straightforwardly applied, and thus eases the pro-
cess of constructing LS2 proofs. One drawback is that the proof of
the soundness of LS2 cannot itself be encoded using this encoding
scheme. However, this aspect is beyond the scope of this paper. The
soundness of LS2 has been proven manually by Garg et al. [23].

ST monad. LS2 has four kinds of judgments: assertions about
invariant properties of a program, assertions about partial correct-
ness properties of a program, assertions about invariant properties
of threads that remain idle (i.e., do not perform any actions such as
sending, or signing messages), and first-order logic inference rules.
Rules for the first three are encoded in Coq using a monad. For the
fourth, we directly use Coq’s first-order reasoning rules.

A state monad, denoted ST P Q, specifies properties of a pro-
gram, where P is the invariant property and Q is the partial cor-
rectness property. Core definitions of the ST monad are shown in
Figure 3. First we define the type tprop, which takes a thread ID
and a beginning and an ending time point as arguments and returns
a Coq proposition. tprop is the basic building block for specify-
ing the trace properties of programs. An invariant property has
type Inv, which is precisely tprop. The partial correctness type,
denoted Pc, takes as an additional argument the type of the return
value of a program. A program e has type ST (fun i ub ue ⇒
ϕ1) (fun (x : A) i ub ue ⇒ ϕ2), if any trace containing unfin-
ished execution of e by thread I between time UB and UE satisfies
ϕ1[UB , UE , I/ub, ue, i], and any trace containing completed ex-
ecution of e by thread I between time UB and UE satisfies the
formula ϕ2[UB , UE , I, v/ub, ue, i, x] provided that e returns v at
time UE .

Assertions for silent threads are encoded using the type Silent.
A proof of the type Silent (fun i ub ue ⇒ ϕ) means that formula
ϕ[UB , UE , I/ub, ue, i] is true on any trace where thread I idles be-
tween timeUB andUE . The silent assertions are needed because in
a distributed system threads execute interleavingly and are allowed
to idle while other threads make progress.

STReturn is the assertion for the return statement. The invariant
property states that before the return, the thread is idle. The par-
tial correctness property states that this thread doesn’t perform any
actions while this return statement is being evaluated, and that the
value being returned is v. STWeakening weakens trace properties.
Both the invariant and partial correctness properties of program e
can be weakened, as long as proofs can be constructed to show that
the resulting properties are logically implied by the original proper-
ties. STBind is the assertion for sequencing statements. The partial
correctness of a sequencing statement is the conjunction of the par-
tial correctness properties of both statements, since the trace con-
taining the complete execution of the sequence contains the com-
plete execution of both statements. The invariant property is the
disjunction of three cases: the program is idle, the first statement
has not finished, and the first one finished but the second one has
not. We use STFix to encode a fixed point function. Finally, we use
the following syntactic sugar for ease of presentation: x ← c1; c2
for sequencing and {{{c}}} for weakening.

Protocols are encoded using these monads. Each instruction is
encoded as a ST monad specifying its properties. These instruc-
tions are then sequentially composed using STBind. For instance,
the following is the encoding of a fragment of the destination’s key
setup program that encrypts and signs the key shared between the
destination and the source, and sends the list of keys to the source.

ckS← STAsymEnc (symkeyToMsg (msgToSymKey keyS)) pks;
sigS← STSign (pair (prinToMsg upstream)

(pair (symkeyToMsg (msgToSymKey keyS))
(pkeyToMsg pks)))

(sk p);
x← STSend (pair keysigsS (pair ckS sigS));
STReturn unitMsg

Here, STAsymEnc, STSign, and STSend are the state monads for
encrypting and signing messages, and sending messages over the

Definition tprop := threadId→ time→ time→ Prop.
Definition Pc T := T→ tprop.
Definition Inv := tprop.
Parameter ST : Inv→ ∀ T, Pc T→ Set.
Parameter Silent : Inv→ Set.

Parameter STReturn : ∀T (v: T) (phi1: Inv) (phi2: Inv),
Silent phi1→ Silent phi2→
ST phi1 (fun x i ub ue⇒ phi2 i ub ue ∧ x = v).

Parameter STWeaken : ∀ T (inv1 inv2: Inv) (pc1 pc2: Pc T),
ST inv1 pc1
→ (∀i ub ue, inv1 i ub ue→ inv2 i ub ue)
→ (∀x i ub ue, pc1 x i ub ue→ pc2 x i ub ue)
→ ST inv2 pc2.

Parameter STBind : ∀T1 T2 (phi: Inv) inv1 (pc1: Pc T1)
inv2 (pc2: T1→ Pc T2), Silent phi→
ST inv1 pc1→ (∀ x:T1, ST (inv2 x) (pc2 x))→
ST (fun i ub ue⇒

phi i ub ue
∨ (∃um, ub ≤ um ∧ um≤ue ∧ phi i ub um ∧ inv1 i um ue)
∨ (∃um1 um2 y, ub≤ um1 ∧ um1 ≤ um2 ∧ um2≤ ue ∧

phi i ub um1 ∧ pc1 y i um1 um2 ∧ inv2 y i um2 ue)
(fun x i ub ue⇒ ∃um1 um2 y, ub≤um1 ∧ um1≤um2 ∧

um2≤ ue ∧ phi i ub um1 ∧
pc1 y i um1 um2 ∧ pc2 y x i um2 ue).

Parameter STFix : ∀T1 T2 inv1 (pc1: ∀x:T1, Pc (T2 x))
(F: (∀v: T1, ST (inv1 v) (pc1 v))→ (∀v: T1, ST (inv1 v) (pc1 v)))
(v: T1), ST (inv1 v) (pc1 v).

Figure 3: Coq encoding of ST monad for LS2

network. Their type specifications state the trace properties of these
actions. The above program maps straightforwardly to the pseudo
code in Figure 1. The tricky part is to specify a type for the pro-
gram and to prove, using LS2, that the type specification is correct.
Once Coq type checks the program against its type, the program
is verified to have the invariant and partial correctness properties
specified in the type.

Honesty. The HONESTY rule asserts properties of traces that con-
tain the execution of trusted programs (shown below). Predicate
honestThread i prog t states that thread i starts to run program
prog at time t. The Honesty rule states that after the thread starts,
the invariant property of the thread holds throughout the execution.

Parameter honestThread: ∀T inv (pc:Pc T), threadId→
ST inv pc→ time→ Prop.

Axiom HONESTY: ∀T inv (pc: Pc T) ub ue i,
ue > ub→ ∀e: ST inv pc, honestThread i e ub→inv i ub ue.

Rely-guarantee. Rely-guarantee reasoning principles (described
by Garg et al. [25]) are needed to prove invariant properties of the
form ∀t:time, ϕ(t). To prove that at all time t, the property ϕ
holds, we need to prove (1) that ϕ holds initially and (2) that ϕ
has held before time t implies that ϕ holds at t. By induction over
time, we can conclude from (1) and (2) that ∀t : time, ϕ(t). In a
distributed system, (2) can be further refined into two conditions
concerning the local guarantees of a set of threads. We list the

conditions below. We define time as natural numbers because we
conflate time with the number of steps the system has taken so far.

(RG1) ϕ(0)
(RG2) ∀u, (∀u′, u′<u→ϕ(u′))→ (∀i, ι(i)→ψ(i, u))
(RG3) ∀u, (∀u′, u′<u→ϕ(u′))→ (∀i, ι(i)→ψ(i, u))→ϕ(u))

We call ϕ(u) a global invariant, and ψ(i, u) a local guarantee by
thread i. Condition RG1 ensures that the invariant property holds
initially. Condition RG2 checks that local guarantees are met as-
suming the global invariant has held so far. Condition RG3 checks
that local guarantees imply the global invariant. Using the above
conditions, we can prove that ∀u, ϕ(u) by inducting over time.
Here, ι(i) selects the set of relevant threads whose local behavior
is central to the security of the protocols. ψ(i, u) is a property of
the trace that is specific to thread i. Condition RG3 is simpler than
the corresponding condition described by Garg et al. [25]: it does
not mention violations of the invariant property. We have proved in
Coq that conditions RG1–RG3 imply ∀u, ϕ(u).

3.2 Protocol Specific Constructs
Inductively defined data structures. Network messages are de-
fined as an inductive data type. The constructors for messages
include principals and keys; constructors for creating ciphertext,
hashes, signatures, MACs, and pseudo-random functions; and a
constructor for pairs. An important definition is a principal’s knowl-
edge, which is crucial to modeling adversary capabilities. We de-
fine has i m t as an inductively defined data type, which means that
thread i knows message m at time t. We show part of the defini-
tion in Figure 4. A principal has a message if it has received that
message earlier, has generated it, or can compute it. For instance,
if a principal has an encryption key k and a message m, then it can
compute the encryption of m using k; if a principal has a cypher-
text and the decryption key, then it can obtain the plaintext. Us-
ing these definitions, we can prove lemmas about the properties of
cryptographic functions. For instance, we can prove the following
lemma by induction over time and the structure of has.

Lemma hasMacCnt:∀ i m t m1 k,
has i m t→ contain m (macMsg k m1)→
has i (symkeyToMsg k) t
∨∃m2 tr, tr≤t ∧ recv i m2 @ tr ∧

contain m2 (macMsg k m1).

This lemma states that if a thread i has a message that contains a
MAC message, then it either has the key for computing the MAC,
or it has received a message that contains that MAC earlier. Here,
contain m1 m2 means that m2 can be computed from m1 and it
is inductively defined.

Axioms. We assert several axioms that can only be proven sound
based on the semantics of actions. We list a few below. Axiom
Recv states that if one receives a message, then someone must have
sent it. Axiom sendHas states that if i sends a message m, then
i must have that message. Axiom Verify states that if sig is the
signature of m using the public key of an honest principal p, then
some thread owned by p must have signed m using p’s private key.

Axiom Recv: ∀ i m t, recv i m @ t→ ∃ j t’, t’<t ∧ send j m @ t’.
Axiom sendHas: ∀ i m t, send i m @ t→ has i m t.
Axiom Verify: ∀ i m p t sig, verify i sig m pk(p) t ∧ honest p→

∃ j t’, t’<t ∧ owns j p∧ sign j m pk−1(p) sig t’.

These axioms together with the definition of has specify our ad-
versaries’ capabilities.

Inductive hassymKey: threadId→ symKey→ time→ Prop :=
...
with has: threadId→ msg→ time→ Prop :=
...
| hasComp: ∀ i m t, mayComp i m t→ has i m t
| hasRecv: ∀ i m t, recv i m @ t→ has i m t
| hasHad: ∀ i m t1 t2, has i m t1→ t1 < t2→ has i m t2
with mayComp: threadId→ msg→ time→ Prop :=
| compSymEnc: ∀ i k m t,

has i (symkeyToMsg k) t→ has i m t→
mayComp i (symEncMsg m k) t

| compSymDec: ∀ i k m t,
has i (symkeyToMsg k) t→ has i (symEncMsg m k) t→
mayComp i m t

| compSig: ∀ i k m t,
has i (skeyToMsg k) t→ has i m t→
mayComp i (signMsg m k) t

| compMac: ∀ i k m t,
has i (symkeyToMsg k) t→ has i m t→
mayComp i (macMsg k m) t

| compPair: ∀ i m1 m2 t,
has i m1 t→ has i m2 t→ mayComp i (pair m1 m2) t

| compProj1: ∀ i m1 m2 t,
has i (pair m1 m2) t→ mayComp i m1 t

...
Figure 4: Principal’s knowledge.

4. THE SECRECY AND AUTHENTICITY
OF THE DRKEY PROTOCOL

Two important properties of the DRKey protocol are Secrecy:
each symmetric key KSi (resp. KDi) generated by the router Ri is
known only to S (resp. D) andRi, and the symmetric keyKD gen-
erated by the destination is known only to S and D ; and Authen-
ticity: the list of keys accepted by the source (resp. destination) is
computed using the correct public key of S (resp. D) for that ses-
sion and the router’s local secret for the source (resp. destination).

4.1 Property specifications
We summarize main predicates in Figure 5. safeMsgM s K is

borrowed from earlier work on verifying secrecy properties using
PCL [41]. We define it inductively over the structure of M . For
instance, the following two rules define when s is safe in an en-
crypted message. Here pubencMsgm pk denotes the encryption
of m using public key pk . Either s is already safe in m, or pk ’s
corresponding private key pk−1 belongs to the set K. For com-
pactness, definitions are shown in the style of inference rules, rather
than the Coq code.

safeMsgm s K

safeMsg (pubencMsgm pk) s K

asymKeyPair pk pk−1 pk−1 ∈ K

safeMsg (pubencMsgm pk) s K

Next we define HasOnlyPath p path keys to state that every key k
in keys , such that k is the ith key in keys , is only known to the
principal p and the ith principal r in path , if r is honest.

HasOnlyPath p () ()

hasOnly (p :: r :: nil) k HasOnlyPath p path keys

HasOnlyPath p (path, r) (keys, k)

Finally we define GenkPath keys path pk sv to mean that for
every k in keys , where k is the ith key in keys , k must be the mes-
sage generated by applying the pseudo random function to the ith

principal on path , r’s secret sv (r) and the hash of the key pk , if r
is honest. Here sv is either SVS or SVD . PrfMsg is the constructor
for messages generated using pseudo random functions.

GenkPath () () pk sv

honest r k = PrfMsg sv(r) pk
GenkPath keys path pk sv

GenkPath (keys, k) (path, r) pk sv

The secrecy and authenticity properties of the keys are defined in
terms of HasOnlyPath p path keys and GenkPath keys path pk sv .
The following two theorems state that our key setup protocol has
key secrecy and authenticity for both the source and the destination.

THEOREM 1 (KEY SECRECY AND AUTHENTICITY (DST)).
For all i S D path keysD pkD t , owner i D , honestD , and
acceptedD i S D path keysD pkD@t imply all of the following
• GenkPath keysD path pkD SVD

• there exists a pkS such that sessionS D path pkS pkD and
HasOnlyPathD path keysD

Theorem 1 states that when the destination (D) finishes validat-
ing the keys (keysD) w.r.t. the path (path) and the session key
(pkD), it is the case that (1) the list of keys it accepts is generated
by intermediate routers if they are honest, (2) each key is known
only to the destination and the router who generated it (if that router
is honest), and (3) the current session is identical to the session that
the destination has shared with the source.

When the source accepts a list of keys, a similar property of the
keys holds, stated below.

THEOREM 2 (KEY SECRECY AND AUTHENTICITY (SRC)).
For all i S D path keysS pkS t , owner i S , honestS , and
acceptedS i S D path keysS pkS@t imply all of the following
• GenkPath keysS (path,D) pkS SVS

• there exists a pkD such that sessionS D path pkS pkD and
HasOnlyPathS (path,D) keysS

honest p Threads owned by the principal p run ei-
ther the source, destination, or router’s
key setup or forwarding program.

ownerIn i P One of the principals in the list of princi-
pals P owns the thread i .

hasOnlyP s s is only known to principals in P .
safeMsgM s K All occurrences of s in message M are

protected by one of the keys in K (s is
safe in M w.r.t. K)

sendsSafeMsg i s K s is safe in all messages sent by thread i
w.r.t. K .

safeNet s K u s is safe in all messages sent by any
thread (including adversarial ones) w.r.t.
K up to time u .

Figure 5: Predicates used in key setup.

4.2 Proofs of Key Secrecy and Authenticity
We explain proofs of Theorem 1. Theorem 2 can be proved sim-

ilarly. We make the following assumptions, which are encoded as
axioms in Coq. (KeyS) and (KeyD) state that if a principal is hon-
est and declares that a public-key component of a key pair is being
used as a session key, then the corresponding private key must be
known only to that principal. (SecS) and (SecD) state that the local
secrets of an honest router are known only to itself.

(KeyS) ∀S D path pkS pkD pkS−1 ,
honestS ∧ sessionS D path pkS pkD∧
asymKeyPair pkS pkS−1 → hasOnly (S :: nil) pkS−1

(KeyD) ∀S D path pkS pkD pkD−1 ,
honestD ∧ sessionS D path pkS pkD∧
asymKeyPair pkD pkD−1 → hasOnly (D :: nil) pkD−1

(SecS) ∀rt , honest rt → hasOnly (rt :: nil) SVS (rt)
(SecD) ∀rt , honest rt → hasOnly (rt :: nil) SVD(rt)

Authenticity proofs. To prove the authenticity property of the list
of keys accepted by the destination, we first consider the authen-
ticity property of one key (Lemma 3). Assume that rt is an honest
router and pkD is a session key for the destination D . If sig is a
signature of the tuple (k , pkD , downstream) signed using the pri-
vate key of rt , then we can prove that k is computed by applying
the pseudo random function to the correct arguments.

LEMMA 3 (KEY AUTHENTICATION). For all i sig d rt pkD
k t , verify i sig (k , pkD , downstream) pk(rt)@t , honest rt
imply k = PrfMsg SVS (rt) pkD

To prove Lemma 3, we use Axiom Verify and conclude that an
honest thread must have signed the tuple. Then we use LS2 infer-
ence rules and prove that an honest node only signs a key, k, that is
generated by applying the pseudo random function to the thread’s
local secret and the hash of the public key that it encrypts k with.
The conclusion follows directly. By induction over the length of
the trace, we can prove the first condition in Theorem 1.

Secrecy proofs. The secrecy proofs follow similar strategies as de-
scribed by Garg et al. [25], where rely-guarantee reasoning prin-
ciples are used to show that the keys have been safe in all network
messages w.r.t. secret keys only known to the trusted principals.
We first consider one key. Assume that rt and D are honest. For a
given session, we prove that the symmetric key k generated by rt
to be shared with D is always protected by the private key pkD−1 ,
formalized below. Recall pkD is the public session key for D in
that session.

LEMMA 4 (SAFENET). For all S D path pkS pkD pkD−1

rt k , honest rt , honestD , asymKeyPair pkD pkD−1 ,
k = PrfMsg SVD(rt) pkD and sessionS D path pkS pkD imply
that for all u , safeNet k (pkD−1 :: nil) u

The proof of the above lemma uses the rely-guarantee reasoning
principles (RG1-RG3) outlined in Section 3.1 with

ι(i) = ∃node, owner i node ∧ honestnode .
ψ(i , u) = ∀rt , sendsSafeMsg i PrfMsg SVD(rt) pkD)

(pkD−1 :: nil)@u .

The three conditions in rely-guarantee principles (introduced in
Section 3.1) are now instantiated as follows: Condition RG1 says
that initially these keys are safe in all network messages. This is
trivially true because no message is sent at time 0. Condition RG2

says that if a router-generated key is protected by pkD−1 in all

network messages, up to u (excluding u), then honest threads will
protect this key in all messages they send out at time u . This condi-
tion can be proved by reasoning about the protocol code. Condition
RG3 says that if a router-generated key is protected by pkD−1 in
all messages that have been sent out at any time before u , and that
all honest nodes protect this key, using pkD−1 in all messages they
send at time u , then this key is also protected by pkD−1 in all mes-
sages sent by all threads up to time u inclusive. Next we explain
how RG3 is proven.

We prove another lemma (shown below), which states that if the
key PrfMsg (SVD(rt)) pk , denoted m, has been safe in all net-
work messages protected by keys in K , then anyone with knowl-
edge of m must either have the router’s secret or a key k in K .

LEMMA 5 (POS). For all i m rt pk t , safeNetm K t ,
m = PrfMsg SVD(rt) pk , and has i m t imply
has i SVD(rt) t and there exists k in K such that has i k t

The proof of RG3 uses Lemma 5 to show that if a thread i can
compute this key at time u , it must be the case that i knows either
rt’s local secret value or pkD−1 . According to our axioms, we
know that i must be owned by either rt or D , both of which are
honest. Therefore, condition RG3 holds.

From Lemma 4 and Lemma 5, we can prove that the key k gen-
erated by rt for D is known only to rt and D (formalized below).

LEMMA 6 (HASONLY). For all S D path pkS pkD pkD−1

rt k , honest rt , honestD , asymKeyPair pkD pkD−1 ,
k = PrfMsg SVD(rt) pkD and sessionS D path pkS pkD
imply hasOnly (rt :: D :: nil) k

The second condition in Theorem 1 can be proved by induction
on the length of the trace and Lemma 6. Combining this with the
authenticity proofs, we have successfully verfied that the DRKey
protocol has the desired security properties.

5. THE ORIGIN AND PATH AUTHENTIC-
ITY OF THE OPT PROTOCOL

We prove two origin and path authenticity theorems for packet
forwarding: one for intermediary routers and the other for the des-
tination. We only present the source-based origin and path authen-
ticity for routers. The corresponding theorem for the destination
differs only in that source is not assumed to be trusted. A direct
benefit of constructing proofs is that we are able to verify these
topology-independent properties.

Property specifications. A list of key predicates is summarized
in Figure 6. Next we define the predicate (goodPathSrc n S D
pkS pkt path t) to mean that a packet with payload pkt has path
authenticity w.r.t. source S , destination D , the session public key
pkS , a path path , and a time point t at index n. It is inductively
defined over n, a position on the path. pkS is S ’s session public
key and path is the path on which the source has intended to send
the packet in this session. The time point, t, is used to enforce the
order in which the packet has traversed the network.

goodPathSrc 0 S D pkS pkt path t

∼ honest R pathN path R (n+1)
goodPathSrc n S D pkS pkt path t

goodPathSrc n+1 S D pkS pkt path t

pathN path R n Router R is the nth node on path from the left (path=R1,R2,...,Rn).
acceptRt i pkt pvfS rt ′ kSh @ t Thread i has accepted payload pkt from router rt ′ with PVFS = pvfS

verified using key kSh at time t.
flagSRsF S path keys pkS S has set up keys keys for path path using public key pkS .
flagSR k S rt pkS S has set up key k with router rt using public key pkS .
session S D path pkS pkD S and D has agreed on a session to forward along path based on key

pkS (for S) and pkD (for D).
goodPvfS pvfS S D pkS path keys pkt pvfS has the correct format of PVFSn w.r.t. S D pkS path keys pkt
goodVrf opv S D pkS path keys pkt k rt opv has the correct format of OPVn w.r.t. S D pkS path keys pkt k rt

Figure 6: Predicates in forwarding

honest R pathN path R (n+1) owner i R
if n = 0 then rt ′ = S
if n = n′+1 then pathN path rt ′ n
recvFrom i rt′ (S ′,D ′, path ′, hashMsg(pkS),

kDh, pvfS , pvfD , opvs, pkt)@tr
tr < t ts ≤ t ts > tr
send i (S ′,D ′, path ′, hashMsg(pkS), kDh,

pvfS1 , pvfD1 , opvs, pkt)@ts
pvfS1 = macMsg (PrfMsg SVS(R) hashMsg(pkS)) pvfS
pvfD1 = macMsg(PrfMsg SVD(R) kDh)

(pvfD , rt ′, hashMsg(pkt))
goodPathSrc n S D pkS pkt path tr

goodPathSrc n+1 S D pkS pkt path t

In the base case when n = 0, there are no additional require-
ments. There are two inductive cases for when n = j + 1. Let
the jth and (j + 1)th routers on path (R1,R2,· · · ,Rn) be Rj and
Rj+1, respectively. When Rj+1 is dishonest, pkt is required to
have path authenticity w.r.t. S, path , and t at index j, and there
is no further requirement for router Rj+1. When Rj+1 is honest,
there exist two time points tr and ts earlier than t, such that router
Rj+1 receives from Rj payload pkt at tr and sends pkt out at a
later time ts, and pkt has path authenticity w.r.t. S , path , and tr at
index j.

Theorem 7 states that the forwarding protocol provides origin
and path validation for each intermediary router. It is source-based
validation because S needs to be honest. However, we do not as-
sume the destination to be trusted.

THEOREM 7 (SOURCE-BASED OPT). For all S , D , rt , pkD ,
kD , pkS−1 , path , keys , pkt , pkS , pvfS rt ′, ta, i,

• session S D path pkS pkD

• asymKeyPair pkS pkS−1

• honest S , honest rt

• flagSRsF S (path , D) (keys , kD) pkS

• owner i rt , acceptRt i pkt pvfS rt ′ hashMsg(pkS) @ ta

then exists n j ms ts opvs pvf0 kD pkD ′, such that

• pathN (path , D) (S n) rt

• goodPathSrc n S D pkS pkt (path, D) ta

• ts ≤ ta , owner j S , send j ms @ ts

• pvf0 = macMsg kD (hashMsg(pkt))

• ms = (S , D , path , hashMsg(pkS), hashMsg(pkD), pvf0 ,
pvf0 , opvs , pkt).

Theorem 7 states that if a router accepts a packet, then the pay-
load, pkt , originates from S and has traversed all the honest nodes
on the path intended by S , up to the router, in the correct order.

High-level descriptions of proofs. The correctness of the forward-
ing protocol relies on the following properties related to verified
MACs. MACProp 1: once the router Ri validates the origin and
path validation field (opv) in the packet header, opv must be the
correct OPVi as shown in Section 2.2.3. MACProp 2: a validated
origin and path validation field (opv) indicates that the packet must
have originated from the source. MACProp 3: The presence of
(PVFSi−1) of the correct format indicates that the packet must
have traversed the path from S to R1 to Ri−1.

MACProp 1 holds because opv is a MAC that can only be com-
puted by S , and S ’s program guarantees to only compute OPV
fields of the right form. MACProp 2 holds for the same reason.
MACProp 3 holds because only Rk and S have the key KSk to
compute PVFSi−1, where 0<k<i. From MACProp 1, we can
derive that once the router Ri verifies the OPVi field, it must be
the case that the path validation field it received in the packet is
the same as PVFSi−1. Origin and path authenticity follows from
MACProp 2 and MACProp 3. An interesting proof technique is
the use of rely-guarantee reasoning to prove MACProp 1–3, as
they are invariant properties about MACs in PVFS, PVFD, and
OPV. Next we show three lemmas that formalize these properties.

Proof of MACProp 1. We define a predicate sendsSafeVrf i S D
rt pkS opv t stating that if a thread i sends out a message m that
contains a message, opv , which is the MAC of some message pvfS ,
the hash of pkt , and a principal rt ′ using key k, then opv must be
a valid origin and path validation field (OPV) for some path and
keys , w.r.t. S D pkS pkt and k.

sendsSafeVrf i S D rt pkS opv t =
∀k m pkt pvfS rt ′,

send i m @ t→ contain m opv →
opv = macMsg k (pvfS , hashMsg(pkt), rt ′)→
∃ path keys , goodVrf opv S D pkS path keys pkt k rt .

Next we define safeNetVrf to mean that sendsSafeVrf i S D
rt pk opv t has held since the beginning till u for all threads i.
safeNetVrf is the first invariant property that we prove for origin
path validation field (OPV), which is MACProp 1 stated above.

safeNetVrf S D rt pk opv u =
∀ i u′, u′ ≤ u→ sendsSafeVrf i S D rt pk opv u′.

The following lemma states that the formula (safeNetVrf S D
rt pk (macMsg k (pvf ,rt’,hp)) u) holds for all time u, provided
that k is the symmetric key computed using pkS and the secret of
the router rt . The first two premises are assumptions about the key
setup for this session: S and D have decided that they will use pkS
(for S) and pkD (for D) to forward along path path ; further, pkS
and pkS−1 are an asymmetric key pair where pkS is the public
key in this pair. These two premises are needed for using key se-
crecy and authenticity properties of the setup phase. The next two

premises state the honesty assumption about the principals; both S
and rt have to run the correct forwarding protocol.

LEMMA 8 (SAFEVRF). For all rt S D k pkS pkD pkS−1

path , session S D path pkS pkD , asymKeyPair pkS pkS−1 ,
honest rt , honest S , and k = (PrfMsg SVS(rt) hashMsg(pkS))
imply for all u pvfS rt’ hp,
safeNetVrf S D rt pkS (macMsg k (pvfS ,rt’,hp)) u .

This lemma is proven using rely-guarantee reasoning. The threads
selection function ι(i) is (ownerIn i (S ::rt ::nil)). The local guaran-
tee ψ(i, u) is

∀pvf rt ′ hp,
sendsSafeVrf i S D rt pkS (macMsg k (pvfS ,rt’, hp)) u

The three conditions in rely-guarantee reasoning are as follows:
Condition RG1 states that initially, if any thread i sends out a mes-
sage that contains a validation field, then it has the right format.
Condition RG2 states that if up to time u, all validation fields that
have been sent out have the correct format, then threads owned by
honest S and R send validation fields of the correct format. Con-
dition RG3 states that if up to time u, all validation fields that have
been sent out have the correct format and that all honest principals
S andR send out correct validation fields at time u, then all threads
(including malicious ones) only send out correct verification fields
at time u.

The proof of RG1 uses the axiom that initially there are no send
actions. The proof of RG2 relies on reasoning about the protocol
code, and RG3 uses the properties of MAC to show that if a thread
i sends out a validation field that is computed using key k, then
i must either (i) be owned by S and R, or (ii) have received it
earlier. In either case, if i sends out a verification field, it must have
the correct format. Case (i) is proven using LS2 rules to reason
about honest protocol code. Case (ii) is proven by directly using
the assumption that safeNetVrf has held so far.

Proof of MACProp 2. Next, we define a second invariant property
related to the orgin and path validation field. This property is cen-
tral to proving source authenticity. sendsSafeVrfT and safeNetVrfT
follow similar format as sendsSafeVrf and safeNetVrf. The differ-
ence is that instead of asserting goodVrf, we assert goodVrfT S D
pk pkt t.

sendsSafeVrfT i S D rt pkS opv t =
∀k m pkt pvfS rt ′,

send i m @ t→ contain m opv →
opv = macMsg k (pvf , rt ′, hashMsg(pkt))→
goodVrfT S D pkS path pkt t.

safeNetVrfT S D rt pkS opv u =
∀ i u′, u′ ≤ u→ sendsSafeVrfT i S D pkS opv u′.

goodVrfT S D pkS pkt t =
∃ j m ts path keys opvs pkD pvf kD ,
ts ≤ t ∧ owner j S ∧ send j m@ts∧
flagSRsF S (path, dst) (keys, kD pkS ∧
pvf0 = macMsg kD (hashMsg(pkt)) ∧
m = (S ,D , path, pkt , pkS , pkD , pvf0 , pvf0 , opvs)

The predicate goodVrfT S D pkS pkt t is true if the source S
has sent out a packet of the right format, where the initial PVF0 is
computed using the key (kD) established between S and D for this
session. The flagSRsF predicate helps us identify arguments in the
packet that S has sent out, as well as kD .

The following lemma states that safeNetVrfT is an invariant
property under the assumptions about this session and the honesty
of principals. The proof is similar to that of Lemma 8.

LEMMA 9 (SAFEVRFT). For all rt S D k pkS pkD pkS−1

path , session S D path pkS pkD , asymKeyPair pkS pkS−1 ,
honest rt , honest S , and k = (PrfMsg SVS(rt) hashMsg(pkS))
imply ∀ u pvfS rt ′ hp,
safeNetVrfT S D rt pkS (macMsg k (pvfS ,rt’, hp)) u .

Proof of MACProp 3. The final lemma is about an invariant prop-
erty associated with a path validation message. Similar to the pre-
vious two lemmas, we first define the invariant property PVFINV
kS pkS pkt pvfS pvfS ′ S D t, where kS is the key shared between
a router and S , pkS is S ’s public session key, pvfS is the MAC that
is the path validation field, and pvfS ′ is the path validation field
used to compute pvfS . We omit the formal definition for PVFINV.
It states that either S has sent out an initial packet where pvfS ′ is
the hash of the payload; or there exists a router rt that has

• received a packet of the correct packet format and

• pvf ′ is the PVFSi−1 in the packet and

• a verification field in the packet is of the form and
macMsgKSi (pvf

′, Ri−1, hashMsg(pkt))

• and rt has sent out a packet of the correct format with PVFSi

and PVFDi updated.

Next we define sendsSafePvfS i S D pkS pvfS pkt t to mean
that whenever a thread i sends out a message that contains a valid
PVFS nested inside a chained MAC, the invariant PVFINV holds.
Predicate safeNetPvfS S D pkS pvfS pkt u asserts that for all
threads i, sendsSafePvfS i S D pkS pvfS pkt t has held up to
time t.

sendsSafePvfS i S D pkS pvfS pkt t =
∀m pvfS ′ k pvfn , send i m@t→ contain m pvfn →
subPvf pvfS pvfn → pvfS = macMsg k pvfS ′→
(∃ path keys , goodPvfS pvfS S D pkS path keys pkt)→
PVFINV k pkS pkt pvfS pvfS ′ S D t.

safeNetPvfS S D pkS pvfS pkt u=
∀ i u′, u′ ≤ u→ sendsSafePvfS i S D pkS pvfS pkt u′.

LEMMA 10 (SAFEPVFS). For all rt S D k pkS pkD pkS−1

path , session S D path pkS pkD , asymKeyPair pkS pkS−1 ,
honest rt , honest S , and flagSR k S rt pkS imply for all u,
safeNetPvfS S D pkS (macMsg km) pkt u.

The proof of Lemma 10 also uses rely-guarantee reasoning. This
lemma provides us with the condition required for path authenticity
at an honest router rt .

We have explained how to prove MACProp 1–3. From there,
the origin and path authenticity properties of the OPT protocol can
be proved as outlined in the beginning of this section.

6. DISCUSSION
The formal verification process has helped us identify subtle flaws

in initial protocol designs. We show a few examples in Section 6.1.
A practical implication of formally verified security guarantees is
that the verified protocol can defend against certain classes of at-
tacks. In Section 6.2, we elaborate on this connection.

6.1 Attacks on Alternative Designs
We manually construct attack traces based on failed proofs. We

examine derivations leading up to the failed proofs, which provide
hints for constructing attacks.

Router needs to sign the public key and directionality. In the
key setup protocol, a router signs the triple: the symmetric key
k, the hash of the public key used to generate k, and a direction:
downstream or upstream . Removing either the public key or the
direction will break the key secrecy and authenticity properties.

Consider the scenario where the router only signs the symmetric
key k. Let pkS1 be the public key that the source S sends in the
packet and pkS2 be an attacker’s public key. The attacker changes
the header field of the packet and inserts its own public key pkS2.
Let kS denote the symmetric key generated by the router using
pkS2. The router encrypts kS using pkS2, generating ckS2, and
signs kS , generating sigS2. The attacker can decrypt ckS2, obtain
kS , and encrypt kS using pkS1, generating ckS1. The attacker
sends ckS1 and the signature sigS2 to the source. The source will
accept this symmetric key. However, this key is not a secret shared
only by the source and the router, violating the secrecy property;
furthermore, the symmetric key is not computed using pkS1, vio-
lating the authenticity property.

Next we show an attack to key authenticity if the router does not
sign the downstream or upstream field. In this scenario, the at-
tacker swaps the position of the session public keys of the source
and destination. The source ends up accepting a key generated
using the secret meant for the destination (SVD(Ri)). The con-
sequence is that, during the forwarding phase, the router will drop
legitimate packets, because the source will compute origin path val-
idation fields using the wrong keys.

Routers need two secrets. Each router has two secrets, one for
computing the key shared with the source and the other for com-
puting the key shared with the destination. We illustrate in an ex-
ample that, if we were to use one secret for both keys, origin and
path authenticity can be violated. The high-level intuition is that
with only one secret, an attacker can trick an honest router Ri to
generate a bogus PVFDi while Ri thinks it is computing a valid
PVFSi for a different path; and generate a bogus OPVi while Ri

thinks it is computing a valid PVFDi for a different path. We show
one scenario here. A second scenario is described in the companion
technical report [49].
Attack scenario: PVFD is used to attack the source-based path
validation of routers. The attack is illustrated in Figure 7. There
are two different paths: path1 is from S1 to D and path2 is from
S2 to D. Routers Ri−1 and Ri+1 are malicious and Ri is honest.
We show how Ri−1 and Ri+1 collude to trick Ri into accepting a
packet thatRi will believe to have originated from S2 and traversed
path2, but was originated from S1 and traversed path1. S1’s ses-
sion key is pkS1 and S2’s session key is pkS2.

A1: S1 sends payload pkt down the path path1.
A2: Malicious Ri−1 on path1 replaces the key hash for the

destination with hash(pkS2), places an arbitrary value X
as PVFDi−1, and sends the packet to Ri

A3: Ri verifies OPVi, and computes PVFDi, denoted Y, and
sends the packet to Ri+1.
Y=mac(prf(SVi, hash(pkS2)), (X,Ri−1, hash(pkt))).

A4: Ri+1 forwards Y to Ri−1

A5: Ri−1 sends a packet with payload pkt , key hash of the
source hash(pkS2), X as PVFSi−1, and Y as OPVi to
Ri.

A6: Ri validates OPVi, and thinks that this packet was from
S2 on path path2, which is not the case.

 S2
1: (S1, D, path1,
 hash(pkS1), hash(pkD),
 pvfS0, pvfD0, opvs, pkt)

2: (S1, D, path1,
 hash(pkS1), hash(pkS2),
 pvfSi-1, X, opvs, pkt)

3: (S1, D, path1,
 hash(pkS1), hash(pkS2),
 pvfSi, Y, opvs, pkt)

5: (S2, D, path2,
 hash(pkS2), hash(pkD),
 X, pvfDi-1, opvs’, pkt)

4: Y

OPVi in opvs’ equals to Y

 S1

Ri-1

Ri+1

 Ri

 D

Y = mac(prf(SVi, hash(pkS2)),
 (X, Ri-1, hash(pkt)))

Figure 7: Attack scenario.

If Ri has two secrets, Y cannot pass as an OPVi field.

6.2 Defending Against Attacks
Source and data spoofing. The source authenticity property of
OPT (Theorem 7) ensures that a successful verification of the path
validation field implies that there can be no source or data spoofing
attacks to Ri, provided that the source is trusted.

Path deviation attack. The path authenticity property of OPT
(Theorem 7) ensures that a successful verification by Ri (or the
destination) implies that the packet Ri (or the destination) received
has traversed all the honest nodes in the source-intended path in the
correct order, assuming that the source is honest. Malicious routers
cannot skip honest nodes, nor can they cause the packet to traverse
the honest nodes in a different order than specified by the source.
This indicates that if a malicious router selects a path not intended
by the source, an honest intermediary router will reject the packet.
However, a malicious node can send the packet to other routers that
are not on the intended path.

Collusion. The path and source authenticity properties are con-
ditioned upon whether a router is honest, i.e., correctly runs the
protocol. It is clear from this property—and can be proven as a
corollary—that if all the preceding routers are honest, then upon
validating OPVi, a routerRi knows that the packet originates from
the source and all links in the intended path beforeRi are traversed
in the right order. Further, no other routers have received the packet
if the links are secure.

When there are multiple adjacent malicious nodes on the in-
tended path (Rj1 to Rjn), a wormhole is present: an honest node
down the path can only conclude that the packet has entered the
hole via Rj1 and exited the hole from Rjn, but has no knowledge
of which nodes were traversed between these two points.

7. RELATED WORK
Secure routing protocols. Proposed secure routing infrastructures
range from security extensions to BGP (Secure-BGP (S-BGP) [28],
ps-BGP [46], so-BGP [47]), to more recent “clean-slate” Inter-
net architectural redesigns such as SCION [50], ICING [37], and
OPT [29]. ICING and OPT focus on packet forwarding, while the
rest of the protocols establish routes among network nodes. ICING

and OPT’s goal is to provide source authentication and path valida-
tion to the routers in the network. Both protocols use the chained
MAC of the packet content to attest to the authenticity of the packet.
OPT is much lighter-weight than ICING in that each router needs
to set up just two keys, one with the source and one with the des-
tination, whereas ICING routers need to set up keys between each
pair of routers on the path. The proof techniques presented here
can be straightforwardly applied to analyzing ICING’s origin and
path authenticity properties.

Automated protocol verification tools. Numerous model check-
ing tools [24, 12, 8, 32, 2, 13, 34, 33, 7, 45, 15, 19, 5, 35, 21,
42, 14, 26, 44] have been successfully applied to analyzing secu-
rity protocols. However, these tools are rarely used in analyzing
network protocols because such protocols are considerably more
complicated than cryptographic protocols: they often compute lo-
cal state, they are recursive, and their security properties need to be
shown to hold for arbitrary network topologies. As the number of
possible topologies is infinite, the number of models is also infinite,
model-checking-based tools, in general, cannot be directly used to
prove the security properties of networking protocols.

Proof-based techniques for reasoning about protocols. Our ver-
ification technique is built on prior work on reasoning about trace
properties of systems [22, 23, 25]. The proof of the secrecy prop-
erty of keys follows the same strategy as the secrecy proofs of Ker-
beros [41, 25]. The proofs of origin and path authenticity properties
use a variant of the rely-guarantee reasoning principles [25]. The
challenging part of the proofs is to identify the invariant properties
associated with each MAC in the protocol. Identifying and verify-
ing these invariants is one of main our technical contributions.

Various techniques have been applied to the verification of re-
cursive cryptographic protocols [40, 6, 30]. All of them require
abstract representation of the protocol behavior. In contrast, we di-
rectly verify local properties about the protocol in the same frame-
work using LS2. Closest to our work is work by Paulson, where
recursive security protocols are verified by encoding the protocol
and the Dolev-Yao adversary model in Isabelle/HOL [40]. The
encoding of messages and the attacker in Paulson’s work is sim-
ilar to ours. In Paulson’s encoding, a protocol is summarized as
trace extensions allowed by the protocols. The correctness of such
assertions is not verified in Paulson’s work. We can verify such
assertions using LS2 inference rules. Because we encode the full
protocol in Coq, we do not need to specify valid trace extensions.
Instead, we specify trace properties that are relevant to the proofs
and verify them using a state monad. Finally, our proofs use rely-
guarantee principles which were not needed in the case studies that
Paulson examined.

Another direction in verifying protocols is to use type systems
built directly or indirectly on the work of Abadi [1] and Gordon
and Jeffrey [27]. The most recent such systems are RCF [10] and
its extensions [11, 43]. RCF is based on refinement types. RCF’s
theory has been implemented for the language F# in the refinement
typechecker F7, backed by the SMT solver Z3 for discharging log-
ical assertions. It has been used to automatically verify security
properties of thousands of lines of code. Verified properties include
weak secrecy properties and correspondence assertions [48]. Our
proofs of authenticity properties require induction over the length
of the trace. F7 would need to incorporate inductive principles to
verify such properties.

Verification of network protocols. Recently, several papers inves-
tigated the verification of route authenticity properties of specific
wireless routing protocols for mobile networks [3, 4, 20]. They
have shown that identifying attacks on route authenticity can be

reduced to constraint solving, and that the security analysis of a
specific route authenticity property that depends on the topologies
of network instances can be reduced to checking these properties
on several four-node topologies. Their techniques are tightly tied
to the protocol that they verify, and therefore, cannot be directly
applied to other networking protocols, including ours. Chen et
al. investigated verifying security properties of secure extensions of
BGP [17]. They verified route authenticity properties on variants
of S-BGP using a combination of manual proofs and Proverif [13].
This technique is specific to S-BGP and cannot be applied to our
setting. Their subsequent work proposes a general framework that
leverages a declarative programming language for verification and
empirical evaluation of routing protocols [18]. Their program logic
for the declarative language could be used in place of LS2. How-
ever, constructing the full proof would still require augmenting
their framework to include domain-specific definitions such as mes-
sages and the attacker’s knowledge, in a similar approach to ours.

8. CONCLUSION
We have mechanized proofs of recursive secrecy and authentic-

ity properties of the OPT source authentication and path validation
protocols. These properties hold for all network topologies. By
using LS2, a program logic for reasoning about programs that run
in adversarial environments, we are able to make minimal assump-
tions about the protocol code and directly verify the invariant prop-
erties of the pseudo code in Coq. We believe our Coq encoding is
general enough to be used in verifying other protocols.

9. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback.

This research was supported in part by CyLab at Carnegie Mel-
lon, NSF grants CNS-1040801, CNS-1115706, CNS-1018061, the
European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) / ERC grant agreement
617605, and a gift from KDDI.

10. REFERENCES
[1] M. Abadi. Secrecy by typing in security protocols. Journal of

the ACM, 46(5):749–786, 1999.
[2] A. Armando and L. Compagna. SATMC: A SAT-Based

Model Checker for Security Protocols. In JELIA, 2004.
[3] M. Arnaud, V. Cortier, and S. Delaune. Modeling and

Verifying Ad Hoc Routing Protocols. In Proc. CSF, 2010.
[4] M. Arnaud, V. Cortier, and S. Delaune. Deciding security for

protocols with recursive tests. In Proc. CADE, 2011.
[5] D. A. Basin. Lazy Infinite-State Analysis of Security

Protocols. In CQRE, 1999.
[6] D. A. Basin, S. Capkun, P. Schaller, and B. Schmidt. Formal

Reasoning about Physical Properties of Security Protocols.
ACM Trans. Inf. Syst. Secur. 14(2):16, 2011.

[7] D. A. Basin, S. Mödersheim, and L. Viganò. Ofmc: A
symbolic model checker for security protocols. Int. J. Inf.
Sec., 4(3):181–208, 2005.

[8] J. Bau and J. Mitchell. A Security Evaluation of DNSSEC
with NSEC3. In Proc. NDSS, 2010.

[9] A. Bender, N. Spring, D. Levin, and B. Bhattacharjee.
Accountability as a Service. In Proc. USENIX SRUTI, 2007.

[10] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and
S. Maffeis. Refinement types for secure implementations.
TOPLAS, 33(2):8:1–8:45, 2011.

[11] K. Bhargavan, C. Fournet, and A. D. Gordon. Modular
Verification of Security Protocol Code by Typing. In Proc.
POPL, 2010.

[12] B. Blanchet. Automatic verification of correspondences for
security protocols. J. Comput. Secur., 17(4), Dec. 2009.

[13] B. Blanchet and B. Smyth. ProVerif 1.86: Automatic
Cryptographic Protocol Verifier, User Manual and Tutorial.
http://www.proverif.ens.fr/manual.pdf.

[14] Y. Boichut, P.-C. Heam, O. Kouchnarenko, and F. Oehl.
Improvements on the Genet and Klay Technique to
Automatically Verify Security Protocols. In Proc. AVIS,
2004.

[15] L. Bozga, Y. Lakhnech, and M. Périn. HERMES: An
Automatic Tool for Verification of Secrecy in Security
Protocols. In CAV, 2003.

[16] K. Butler, T. R. Farley, P. McDaniel, and J. Rexford. A
Survey of BGP Security Issues and Solutions. Proc. the
IEEE, 98:100–122, January 2010.

[17] C. Chen, L. Jia, B. T. Loo, and W. Zhou. Reduction-based
Security Analysis of Internet Routing Protocols. In WRiPE,
2012.

[18] C. Chen, L. Jia, H. Xu, C. Luo, W. Zhou, and B. T. Loo. A
Program Logic for Verifying Secure Routing Protocols. In
Proc. FORTE, 2014.

[19] E. M. Clarke, S. Jha, and W. Marrero. Verifying Security
Protocols with Brutus. ACM Trans. Softw. Eng. Methodol.,
9:443–487, 2000.

[20] V. Cortier, J. Degrieck, and S. Delaune. Analysing routing
protocols: four nodes topologies are sufficient. In Proc.
POST, 2012.

[21] C. J. Cremers. The Scyther Tool: Verification, Falsification,
and Analysis of Security Protocols. In Proc. CAV, 2008.

[22] A. Datta, A. Derek, J. C. Mitchell, and A. Roy. Protocol
Composition Logic (PCL). Electronic Notes in Theoretical
Computer Science, 172:311–358, 2007.

[23] A. Datta, J. Franklin, D. Garg, and D. Kaynar. A Logic of
Secure Systems and its Application to Trusted Computing. In
Proc. IEEE S&P, 2009.

[24] S. Escobar, C. Meadows, and J. Meseguer. A rewriting-based
inference system for the NRL protocol analyzer: grammar
generation. In Proc. FMSE, 2005.

[25] D. Garg, J. Franklin, A. Datta, and D. Kaynar. Compositional
System Security in the Presence of Interface-Confined
Adversaries. Electronic Notes in Theoretical Computer
Science, 265:49–71, 2010.

[26] T. Genet and F. Klay. Rewriting for Cryptographic Protocol
Verification. In Proc. CADE, 2000.

[27] A. D. Gordon and A. Jeffrey. Authenticity by typing for
security protocols. Journal of Computer Security,
11(4):451–519, July 2003.

[28] S. Kent, C. Lynn, J. Mikkelson, and K. Seo. Secure Border
Gateway Protocol (S-BGP). IEEE Journal on Selected Areas
in Communications, 18:103–116, 2000.

[29] T. H.-J. Kim, C. Basescu, L. Jia, S. B. Lee, Y.-C. Hu, and
A. Perrig. Lightweight Source Authentication and Path
Validation. In Proc. of ACM SIGCOMM, 2014.

[30] R. Küsters and T. Wilke. Automata-Based Analysis of
Recursive Cryptographic Protocols. In Proc. STACS, 2004.

[31] X. Liu, A. Li, X. Yang, and D. Wetherall. Passport: Secure
and Adoptable Source Authentication. In Proc. of NSDI,
2008.

[32] G. Lowe. An Attack on the Needham-Schroeder Public-key
Authentication Protocol. Inf. Process. Lett., 56(3):131–133,
1995.

[33] C. Meadows. The NRL Protocol Analyzer: An Overview. J.
Log. Program., 26:113–131, 1996.

[34] J. K. Millen, S. C. Clark, and S. B. Freedman. The
Interrogator: Protocol Security Analysis. IEEE Trans.
Software Eng., 13:274–288, 1987.

[35] J. C. Mitchell, M. Mitchell, and U. Stern. Automated
analysis of cryptographic protocols using mur-phi. In Proc.
IEEE S&P, 1997.

[36] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and
L. Birkedal. Ynot: Reasoning with the awkward squad. In
Proc. ICFP, 2008.

[37] J. Naous, M. Walfish, A. Nicolosi, D. Mazieres, M. Miller,
and A. Seehra. Verifying and enforcing network paths with
ICING. In Proc. CoNEXT, 2011.

[38] O. Nordström and C. Dovrolis. Beware of BGP attacks.
SIGCOMM Computer Communication Review, 34:1–8,
2004.

[39] B. Parno, A. Perrig, and D. Andersen. SNAPP: Stateless
Network-Authenticated Path Pinning. In Proc. ACM
Symposium on Information, Computer and Communications
Security (ASIACCS), 2008.

[40] L. C. Paulson. The Inductive Approach to Verifying
Cryptographic Protocols. J. Comput. Secur., 6(1-2):85–128,
Jan. 1998.

[41] A. Roy, A. Datta, A. Derek, J. C. Mitchell, and J.-P. Seifert.
Secrecy Analysis in Protocol Composition Logic. In Proc.
ASIAN, 2006.

[42] D. X. Song, S. Berezin, and A. Perrig. Athena: A Novel
Approach to Efficient Automatic Security Protocol Analysis.
J. Comput. Secur., 9:47–74, 2001.

[43] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan,
and J. Yang. Secure Distributed Programming with
Value-Dependent Types. In Proc. ICFP, 2011.

[44] M. Turuani. The CL-Atse Protocol Analyser. In Proc. RTA,
2006.

[45] L. Viganò. Automated Security Protocol Analysis With the
AVISPA Tool. Electron. Notes Theor. Comput. Sci.,
155:61–86, 2006.

[46] T. Wan, E. Kranakis, and P. C. Oorschot. Pretty secure BGP
(psBGP). In Proc. NDSS, 2005.

[47] R. White. Securing BGP Through Secure Origin BGP
(soBGP). The Internet Protocol Journal, 6(3):15–22, 2003.

[48] T. Y. C. Woo and S. S. Lam. A Semantic Model for
Authentication Protocols. In Proc. IEEE S&P, 1993.

[49] F. Zhang, L. Jia, T. H.-J. Kim, C. Basescu, Y.-C. Hu, and
A. Perrig. Mechanized network origin and path authenticity
proofs. Technical Report CMU-CyLab-14-007, Carnegie
Mellon University, 2014.

[50] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig, and
D. G. Andersen. SCION: Scalability, Control, and Isolation
On Next-Generation Networks. In Proc. IEEE S&P, 2011.

http://www.proverif.ens.fr/manual.pdf

	Introduction
	Background
	Reasoning Logics
	Origin and Path Trace (OPT)
	Attacker Model
	Key Setup (DRKey Protocol)
	Forwarding

	Encoding of LS2 and PCL
	Shallow Embedding of LS2
	Protocol Specific Constructs

	The Secrecy and Authenticity of the DRKey protocol
	Property specifications
	Proofs of Key Secrecy and Authenticity

	The Origin and Path Authenticity of the OPT protocol
	Discussion
	Attacks on Alternative Designs
	Defending Against Attacks

	Related Work
	Conclusion
	Acknowledgments
	References

